首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
猪肝酯酶是手性合成中重要的水解酶,在猪肝酯酶的催化下,苯乙二醇环碳酸酯发生水解,生成苯乙二醇。实验围绕影响猪肝酯酶催化反应活性的4个主要因素进行了系统研究,得到了最优的酶浓度(15g/L)、pH值(8.0)、温度(25~30℃)及有机溶剂种类和浓度(二氧六环,65%v/v),为猪肝酯酶催化苯乙二醇环碳酸酯反应的进一步研究奠定了基础。  相似文献   

2.
酯酶同工酶多态性及其在昆虫分类学中的应用价值   总被引:25,自引:2,他引:23  
同工酶 (isozyme)是具有相同或相似的催化功能而分子结构不同的一类酶。自从 Hunter和 Markert[1] 创立了同工酶酶谱 (zymogram)技术以来 ,同工酶的研究得到了很大的发展 ,酶谱的变化已作为鉴定物种、研究分类与进化、遗传与变异的重要指标。酯酶同工酶 (esterase isozyme)是能水解酯键的一组酶 ,在生物体内广泛存在。许多实验证明 :它在种系的鉴定中具有很重要的参考价值。本文旨在对其分类学价值进行探讨。1 酯酶的定义和分类酯酶 (esterase)是催化酯类化合物水解的酶系 ,其作用是水解脂肪族酯 (aliphatic ester)和芳香族酯 (aromatic e…  相似文献   

3.
从土攘中筛选获得一株可以高对映选择性水解酮基布洛芬乙酯的酵母KET4,经鉴定为芸苔丝孢酵母(Trichosporon brassicae)。研究了该菌的生长和产酶过程,考察了其静息细胞对酮基布洛芬乙酯水解的催化特性。用该菌催化酯水解时,转化率为41%时,产物的对映体过量值为91%,对映选择率达到45。  相似文献   

4.
本文将来自反硝化无色杆菌Achromobacterdenitrificans1104的酯酶基因EHest,转化大肠杆菌中,成功表达了具有不对称水解农药甲霜灵的中间体(R,S)-2,6-二甲基苯基氨基丙酸甲酯( MAP )活性的酯酶EHesterase。用重组酯酶EHesterase催化MAP 的水解,底物浓度50 g/L,反应1h的转化率29.5%,产物( R-酸)的eep 是85.1%。该酶的最适反应pH和温度分别为9.0和50℃,在50℃以下和pH5~9之间具有较好的稳定性。该酶水解MAP 的米氏动力学参数Vm、Km 分别是0.733 g/(L·min)和7.49 g/L。加入10%DMSO对酶EHesterase的立体选择性和催化速度有一定的促进作用。 Cu2+、Fe3+对酶活有明显抑制作用。该酶水解MAP 的活性与水解p-对硝基苯乙酸酯的活性数量级相当,是水解橄榄油活性的333倍。  相似文献   

5.
本文采用4-甲基伞形酮苯基磷酸酯为底物检测人血清中酶活性情况,发现在人血清中存在一种能够选择性水解苯基膦酸单酯键的酶活性成份。该酶具有最适pH8.8—9.1,在60℃(反应30分钟)条件下具有最大活性。Km=1.72×10~(-4)mol/L,Na_3PO_4、EDTA和半胱氨酸可抑制其活性,而CuSO_4、腺苷、胸苷、NaN_3、E600、PCMB、DFP和毒扁豆碱等对其活性没有影响。Mg~(++)可激活酶活性,并能解除EDTA的抑制作用。 此酶不能水解5′-NPDase和APase的底物,有关性质也与5′-NPDase和APasc有区别。本文将此酶暂定名为“膦酸单酯酶”。  相似文献   

6.
酮基布洛芬拆分用酯酶产生菌的筛选及其催化特性   总被引:4,自引:0,他引:4  
从土壤中筛选获得一株可以高对映选择性水解酮基布洛芬乙酯的酵母KET4,经鉴定为芸苔丝孢酵母(Trichosporon brassicae)。研究了该菌的生长和产酶过程,考察了其静息细胞对酮基布洛芬乙酯水解的催化特性。用该菌催化酯水解时,转化率为41%时,产物的对映体过量值为91%,对映选择率达到45。  相似文献   

7.
微生物酯酶拆分生物素手性中间体的初步研究   总被引:2,自引:0,他引:2  
皮雄娥  汪钊   《微生物学通报》2004,31(4):23-25
以镰刀霉菌 (Fusariumsp )ZG 2 3发酵的菌丝球做酶源 ,对生物素中间体内酯的溶解性做了研究 ,选取最适反应介质甲苯。酶水解反应条件研究表明 :该酶的最适反应温度为 45℃ ,最适反应pH为 7 0~ 7 5。在酶不对称水解生物素手性中间体内酯过程中 ,对甲苯溶液加酶量 5 0 0U ,底物浓度 2 %~ 5 %时 ,水解效果最好  相似文献   

8.
立体选择性水解2-羧乙基-3-氰基-5-甲基己酸乙酯(CNDE)是化学-酶法合成重大疾病治疗药物普瑞巴林的关键步骤。分离纯化了能够高效水解S-型CNDE的摩氏摩根菌ZJB-09203胞内酯水解酶,并进行酶学性质研究。采用硫酸铵分级沉淀、Phenyl Sepharose 6 FF疏水柱层析、DEAE Sephadex A-50阴离子交换和羟基磷灰石Bio-Scale CHT层析,纯化得到电泳纯的酯水解酶。SDS-PAGE和凝胶过滤HPLC分析确定该酶为单亚基蛋白,分子量为68 kDa。不同碳链长度p-硝基苯酚酯特异性酶解结果表明,该酶为酯酶,酶促合成普瑞巴林手性中间体(S)-2-羧乙基-3-氰基-5-甲基己酸的最适pH为9.0,最适温度为45℃,且在pH 7.0-9.0和40℃条件下具有良好的稳定性。Ca2+、Cu2+、Mn2+对酶活有一定的促进作用,Co2+、Fe3+、Ni2+及EDTA对酶活有较强的抑制作用。此外,考察了该酯酶水解p-硝基苯酚酯的动力学参数,及CNDE浓度对转化率的影响。首次报道了能够立体选择性水解CNDE的酯酶,相关酶学性质研究将为该酶催化合成普瑞巴林手性中间体的工业化应用提供重要依据。  相似文献   

9.
【目的】筛选鉴定1株可以选择性水解农药甲霜灵的中间体(R,S)-2,6-二甲基苯基氨基丙酸甲酯(MAP)的菌株,并克隆、表达该菌株中的酯酶基因。【方法】以MAP为唯一碳源,对活性污泥样品中的微生物进行富集培养,采用罗丹明B平板显色法进行初筛,通过摇瓶复筛得到了1株对MAP具有最高对映体选择性和水解活力的新菌株,根据其形态、生理生化特征及16S rRNA序列分析,确立该菌株的系统发育学地位。构建该菌株的基因文库,筛选获得含目的基因的克隆子,通过序列分析和引物扩增得到酯酶基因,将基因与表达载体pET28a(+)连接后,转化大肠杆菌BL21Gold(DE3)plysS,构建重组菌。【结果】该菌属于革兰氏阴性菌,结合16S rRNA基因、形态特征和生理生化实验结果,鉴定该菌为反硝化无色杆菌。通过基因文库法,找到了该菌中的酯酶基因EHest,并成功构建了重组大肠杆菌EHest-p ET28a(+)-BL21Gold(DE3)plys S,表达了来自Achromobacter denitrificans 1104且具有不对称水解MAP活性的酯酶EHesterase,大小约27 kDa,表达酶活是原始菌株的27.1倍。用EHesterase催化MAP水解,底物浓度50 g/L,反应1 h,底物转化率为29.5%,产物(酸)的ee_p为85.1%,对映体选择性为R型。该酶的最适反应pH和温度分别为pH 9.0和50°C。它水解MAP的活性分别是水解橄榄油和乙酸乙酯活性的333倍和667倍。【结论】筛选到1株具有不对称水解MAP能力的新菌株Achromobacter denitrificans 1104。  相似文献   

10.
铜绿假单胞菌(Pseudomonas aeruginosa) AS 1.204完整细胞a-氨基酸酯水解酶能催化a-氨基酸酯的水解和转移a-氨基酸酯的酰基到胺亲核试剂上。在水解和转移反应中酶的一般性质相同,最适pH为5.2,最适温度都是40℃。7-氨基脱乙酰氧基头孢烷酸(7一ADCA)抑制苯甘氮酸甲酣(PG-Ome)的水解。因此,该酶催化7一ADCA和PG-Ome转化成相应的半合成头孢菌素。  相似文献   

11.
Senescence marker protein-30 (SMP-30) is a candidate enzyme that can function as a catalytic bioscavenger of organophosphorus (OP) nerve agents. We purified SMP-30 from mouse (Mo) liver and compared its hydrolytic activity towards various esters, lactones, and G-type nerve agents with that of human paraoxonase1 (Hu PON1) and squid diisopropylfluorophosphatase (DFPase). All three enzymes contain one or two metal ions in their active sites and fold into six-bladed β-propeller structures. While Hu PON1 hydrolyzed a variety of lactones, the only lactone that was a substrate for Mo SMP-30 was d-(+)-gluconic acid δ-lactone. Squid DFPase was much more efficient at hydrolyzing DFP and G-type nerve agents as compared to Mo SMP-30 or Hu PON1. The K(m) values for DFP were in the following order: Mo SMP-30>Hu PON1>squid DFPase, suggesting that the efficiency of DFP hydrolysis may be related to its binding in the active sites of these enzymes. Thus, homology modeling and docking were used to simulate the binding of DFP and selected δ-lactones in the active sites of Hu SMP-30, Hu PON1, and squid DFPase. Results from molecular modeling studies suggest that differences in metal-ligand coordinations, the hydrophobicity of the binding pockets, and limited space in the binding pocket due to the presence of a loop, are responsible for substrate specificities of these enzymes.  相似文献   

12.
A diisopropyl-fluorophosphatase (DFPase) was purified from brain and ganglia of squid Todarodes pacificus steenstrup. The DFPase had a preference in hydrolysis toward diisopropylphosphorofluoridate (DFP). It also was able to hydrolyze O-1,2,2-trimethylpropyl methylphosphofluoridate (soman) and O-isopropyl methylphosphonofluoridate (sarin) at nearly equal hydrolytic rates but only 1/10 that of DFP. The hydrolytic activity toward diethyl-p-nitrophenylphosphate (paraoxon) was very low compared with DFP, so man, and sarin. The DFPase was purified 330-fold to a specific activity of 18,300 n mol/min/mg protein. Its molecular weight was 34,000 dalton determined by gel-filtration chromatography. Mn2+ stimulation of the DFPase was not observed when DFP and soman were the substrates, but with sarin, the rate increased onefold in the presence of 1.0 mM of Mn2+. Ethylenediamine tetraacetic acid disodium (EDTA-Na2) at 0.05 M inhibited the DFPase activity about 30%. It could be concluded that this DFPase belongs to the squid-type DFPase.  相似文献   

13.
1. The bivalve Rangia cuneata can enzymatically detoxify the organophosphorus acetylcholinesterase inhibitors DFP and soman. 2. Digestive gland homogenates contained Mazur-type DFPases based on response to Mn2+ ions, and relative rates of DFP: soman hydrolysis. Squid-type DFPase contributed little to the total organophosphate acid (OPA) anhydrase activity of these preparations. 3. The natural substrate(s) and physiological role(s) of OPA anhydrase in R. cuneata has yet to be determined; however, DFPase specific activity was pronounced in the digestive gland, the primary organ involved in bioconcentration and biotransformation of xenobiotics, and in the gills, which are in continuous contact with water-borne chemicals.  相似文献   

14.
Senescence marker protein-30 (SMP30) was originally identified as a novel protein in the rat liver, the expression of which decreases androgen-independently with aging. We have now characterized a unique property of SMP30, the hydrolysis of diisopropyl phosphorofluoridate (DFP), which is similar to the chemical warfare nerve agents sarine, soman and tabun. Hydrolysis of DFP was stimulated equally well by 1 mM MgCl2, MnCl2 or CoCl2, to a lesser extent by 1 mM CdCl2 but not at all by 1 mM CaCl2. No 45Ca2+-binding activity was detected for purified SMP30, suggesting that SMP30 is not a calcium-binding protein, as others previously stated. Despite the sequence similarity between SMP30 and a serum paraoxonase (PON), the inability of SMP30 to hydrolyze PON-specific substrates such as paraoxon, dihydrocoumarin, γ-nonalactone, and δ-dodecanolactone indicate that SMP30 is distinct from the PON family. We previously established SMP30 knockout mice and have now tested DFPase activity in their livers. The livers from wild-type mice contained readily detectable DFPase activity, whereas no such enzyme activity was found in livers from SMP30 knockout mice. Moreover, the hepatocytes of SMP30 knockout mice were far more susceptible to DFP-induced cytotoxicity than those from the wild-type. These results indicate that SMP30 is a unique DFP hydrolyzing enzyme in the liver and has an important detoxification effect on DFP. Consequently, a reduction of SMP30 expression might account for the age-associated deterioration of cellular functions and enhanced susceptibility to harmful stimuli in aged tissue.  相似文献   

15.
长吻鮠碱性磷酸酶的动力学研究   总被引:1,自引:0,他引:1  
采用生化手段,从长吻鮠(Leiocassis longirostris Günther)肝中提取出碱性磷酸酶(AKP).提纯倍数为62.08倍,比活为66.43单位/mg蛋白,提取酶液经PAGE和SDS-PAGE只呈现一条区带.该酶的最适pH为10.05,7.0>pH>11.0时不稳定;最适温度为40℃,;对热不很稳定;以磷酸苯二钠为底物其Km值为1.82×10-3mol/L.Mg2+为该酶的激活剂,L-Cys、KH2PO4、DFP、ME、EDTA-Na2为抑制剂.选用KH2PO4,和DFP作抑制类型的判断,结果表明,KH2PO4,属竞争性抑制剂,其抑制常数为2.41mmol/L,DFP为非竞争性抑制剂,抑制常数为1.01mmol/L.    相似文献   

16.
An enzyme which hydrolyzes DFP and similar organophosphorus compounds has been purified 1300-fold from squid head ganglion. This enzyme which we term squid nerve DFPase is markedly different from previously reported DFPases from mammalian and microbial sources. The enzyme shows marked selectivity with respect to substrates, permitting some speculation about the nature of its active site. A striking feature of squid nerve DFPase is its relative limitation to cephalopod nerve. Available evidence suggests that a similar distribution may exist for isethionate, the major anion in squid nerve. This tentative parallel between DFPase and isethionate raises the possibility of a function for squid nerve DFPase.  相似文献   

17.
The active site, the substrate binding site, and the metal binding sites of the diisopropylfluorophosphatase (DFPase) from Loligo vulgaris have been modified by means of site-directed mutagenesis to improve our understanding of the reaction mechanism. Enzymatic characterization of mutants located in the major groove of the substrate binding pocket indicates that large hydrophobic side chains at these positions are favorable for substrate turnover. Moreover, the active site residue His287 proved to be beneficial, but not essential, for DFP hydrolysis. In most cases, hydrophobic side chains at position 287 led to significant catalytic activities although reduced relative to the wild-type enzyme. With respect to the Ca-1 binding site, where catalysis occurs, various mutants indicated that the net charge at this calcium-binding site as well as the relative positions of the charged calcium ligands is crucial for catalytic activity. The importance of the electrostatic potential at the active site was furthermore revealed by various mutations of residues lining the interior of the central water-filled tunnel, which traverses the entire protein structure. In this respect, the structural features of residue His181, which is located at the opposite end of the DFPase tunnel relative to the active site, were characterized extensively. It was concluded that a tunnel-spanning hydrogen bond network, which includes a large number of apparently slow exchanging water molecules, relays any modifications in the electrostatics of the system to the active site, thus affecting the catalytic reactivity of the enzyme.  相似文献   

18.
Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris.   总被引:1,自引:0,他引:1  
BACKGROUND: Phosphotriesterases (PTE) are enzymes capable of detoxifying organophosphate-based chemical warfare agents by hydrolysis. One subclass of these enzymes comprises the family of diisopropylfluorophosphatases (DFPases). The DFPase reported here was originally isolated from squid head ganglion of Loligo vulgaris and can be characterized as squid-type DFPase. It is capable of hydrolyzing the organophosphates diisopropylfluorophosphate, soman, sarin, tabun, and cyclosarin. RESULTS: Crystals were grown of both the native and the selenomethionine-labeled enzyme. The X-ray crystal structure of the DFPase from Loligo vulgaris has been solved by MAD phasing and refined to a crystallographic R value of 17.6% at a final resolution of 1.8 A. Using site-directed mutagenesis, we have structurally and functionally characterized essential residues in the active site of the enzyme. CONCLUSIONS: The crystal structure of the DFPase from Loligo vulgaris is the first example of a structural characterization of a squid-type DFPase and the second crystal structure of a PTE determined to date. Therefore, it may serve as a structural model for squid-type DFPases in general. The overall structure of this protein represents a six-fold beta propeller with two calcium ions bound in a central water-filled tunnel. The consensus motif found in the blades of this beta propeller has not yet been observed in other beta propeller structures. Based on the results obtained from mutants of active-site residues, a mechanistic model for the DFP hydrolysis has been developed.  相似文献   

19.
We demonstrate two novel approaches to enhance interactions of polymer-immobilized biomolecules with their substrates. In the first approach, diisopropylfluorophosphatase (DFPase) containing poly(urethane) (PU) coatings were made microporous by incorporating, then extracting, poly(ethylene glycol)-based diesters as porogens. Incorporation of 2% w/w porogen increased the effective diffusion coefficient of diisopropylfluorophosphate (DFP) through the coatings by 30% and increased the apparent turnover number of immobilized DFPase 3-fold. In the second approach, prior to immobilization, hydrophobic modification of DFPase was achieved through its conjugation with a dimer/trimer mixture of a uretdione based on 1,6-diisocyanatohexane. When the hydrophobically modified DFPase was immobilized in coatings, catalytic activity was 4-fold higher than that of the equivalent, immobilized, native DFPase. This activity enhancement was independent of the presence or absence of pores. Confocal microscopy images of coatings containing fluorescently labeled lysozyme show that the native enzyme is distributed uniformly over the entire thickness of the coatings. Hydrophobically modified and fluorescently labeled lysozyme is accumulated only in the upper 10 microm cross-sectional layer of a 100 microm-thick coating. Interactions of bioplastics with their substrates are tunable either by pore induction in a polymer or by directed migration of the hydrophobically modified biomolecule to the desired location. The latter approach has broad implications, including overcoming mass transfer limitations experienced by immobilized biocatalysts.  相似文献   

20.
Organophosphate detoxicating hydrolases in different vertebrate species   总被引:3,自引:0,他引:3  
Phosphorylphosphatase activities in various organs of vertebrate species from different classes were determined using a spectrophotometric assay for paraoxonase (EC 3.1.1.2) and a potentiometric assay with a fluoride sensitive electrode for DFPase (EC 3.8.2.1). Temperature-dependent inactivation experiments, an extended interpretation of mixed substrate studies and activity distribution patterns confirm that in vertebrate tissue at least two different enzymes are responsible for hydrolytic detoxication of paraoxon and DFP. Total organophosphate detoxicating phosphorylphosphatase activity of a certain animal species is shown to be the major determinant for differences between the inhibitory potency of organophosphorus compounds on the animal's target enzymes in vitro and organophosphate toxicity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号