首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The improvement for drought tolerance requires understanding of the genetic control of wheat (Triticum aestivum L.) reaction to drought. In this study, a set of 131 recombinant inbred lines of wheat were investigated under well-watered (WW) and drought stress (DS) environments across 2 years to map quantitative trait loci (QTLs) for yield and physiological traits. A total of 225 QTLs were detected, including 32 non-environment-specific loci that were significant in both DS and WW, one drought-specific locus and two watering-specific loci. Three consistently-expressed QTLs (QTkw-3A.2, QTss-1A, and QScn-7A.1) were identified in at least three environments and the QTkw-1D.1 was significant in DS across the 2 years. By unconditional and conditional QTL analysis, spike number per plant and kernel number per spike were more important than thousand-kernel weight for grain yield (GY) at the given genetic background. Meta-analysis identified 67 meta-QTLs that contained QTLs for at least two traits. High frequency co-location of QTLs was found among either the spike-related traits or the six physiological traits. Four photosynthesis traits (CHL, LWUE, P N, and C i) were co-located with GY and/or yield components on various MQTLs. The results provided QTLs that warrant further study for drought tolerance breeding and are helpful for understanding the genetic basis of drought tolerance and the genetic contribution of yield components to GY at individual QTL level in wheat.  相似文献   

2.

Key message

We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay.

Abstract

Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai?×?Shi 4185 (D?×?S), Gaocheng 8901?×?Zhoumai 16 (G?×?Z) and Linmai 2?×?Zhong 892 (L?×?Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5–32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.
  相似文献   

3.
Selecting high-yielding wheat cultivars with more productive tillers per unit area (PTN) combined with more fertile spikelets per spike (fSNS) is difficult. QTL mapping of these traits may aid understanding of this bottleneck and accelerate precision breeding for high yield via marker-assisted selection. PTN and fSNS were assessed in four to five trials from 2015 to 2017 in a doubled haploid population derived from two high-yielding cultivars “UI Platinum” and “SY Capstone.” Two QTL for PTN (QPTN.uia-4A and QPTN.uia-6A) and four QTL for fSNS (QfSNS.uia-4A, QfSNS.uia-5A, QfSNS.uia-6A, and QfSNS.uia-7A) were identified. The effects of the QTL were primarily additive and, therefore, pyramiding of multiple QTL may increase PTN and fSNS. However, the two QTL for PTN were positioned in the flanking regions for the two QTL for fSNS on chromosomes 4A and 6A, respectively, suggesting either possible pleiotropic effect of the same QTL or tightly linked QTL and explaining the difficulty of selecting both high PTN and fSNS in phenotypic selection. Kompetitive allele-specific PCR (KASP) markers for all identified QTL were developed and validated in a recombinant inbred line (RIL) population derived from the same two cultivars. In addition, KASP markers for three of the QTL (QPTN.uia-6A, QfSNS.uia-6A, and QfSNS.uia-7A) were further validated in a diverse spring wheat panel, indicating their usefulness under different genetic backgrounds. These KASP markers could be used by wheat breeders to select high PTN and fSNS.  相似文献   

4.

Key message

The elite ZmCCT haplotypes which have no transposable element in the promoter could enhance maize resistance to Gibberella stalk rot and improve yield-related traits, while having no or mild impact on flowering time. Therefore, they are expected to have great value in future maize breeding programs.

Abstract

A CCT domain-containing gene, ZmCCT, is involved in both photoperiod response and stalk rot resistance in maize. At least 15 haplotypes are present at the ZmCCT locus in maize germplasm, whereas only three of them are found in Chinese commercial maize hybrids. Here, we evaluated ZmCCT haplotypes for their potential application in corn breeding. Nine resistant ZmCCT haplotypes that have no CACTA-like transposable element in the promoter were introduced into seven elite maize inbred lines by marker-assisted backcrossing. The resultant 63 converted lines had 0.7-5.1 Mb of resistant ZmCCT donor segments with over 90% recovery rates. All converted lines tested exhibited enhanced resistance to maize stalk rot but varied in photoperiod sensitivity. There was a close correlation between the hybrids and their parental lines with respect to both resistance performance and photoperiod sensitivity. Furthermore, in a given hybrid A5302/83B28, resistant ZmCCT haplotype could largely improve yield-related traits, such as ear length and 100-kernel weight, resulting in enhanced grain yield. Of nine resistant ZmCCT haplotypes, haplotype H5 exhibited excellent performance for both flowering time and stalk rot resistance and is thus expected to have potential value in future maize breeding programs.
  相似文献   

5.
Early flowering 3 (ELF3) is a regulator to modulate photoperiod flowering in Arabidopsis. The homologs of ELF3 in rice and barley also have been identified essential for regulation of flowering time. In the current study, TaELF3 genes, homologs of ELF3 in bread wheat (Triticum aestivum L.), were cloned by a comparative genomics approach and located on homologous group 1 chromosomes, designated as TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL, respectively. A sequence-tagged site (STS) marker was developed based on sequence polymorphism at the TaELF3-1DL locus. A quantitative trait locus (QTL) for heading date (HD) co-segregating with TaELF3-1DL explained 7.7–20.6% of the phenotypic variance in a RIL mapping population derived from the Gaocheng 8901/Zhoumai 16 cross genotyped using the wheat 90K iSelect assay. The late HD allele of TaELF3-1DL was prevalently selected in China’s specific wheat-growing regions and other countries. This study produces novel information in better understanding HD and provides a reliable functional marker for molecular marker-assisted selection in wheat breeding.  相似文献   

6.

Key message

Coincident regions on chromosome 4B for GW, on 5A for SD and TSS, and on 3A for SL and GNS were detected through an integration of a linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A and 6A were identified with high PVE% on a composite map.

Abstract

The panicle traits of wheat, such as grain number per spike and 1000-grain weight, are closely correlated with grain yield. Superior and effective alleles at loci related to panicles developments play a crucial role in the progress of molecular improvement in wheat yield breeding. Here, we revealed several notable allelic variations of seven panicle-related traits through an integration of genome-wide association mapping and a linkage analysis. The linkage analysis was performed using a recombinant inbred line (RIL) population (173 lines of F8:9) with a high-density genetic map constructed with 90K SNP arrays, Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) markers in five environments. Thirty-five additive quantitative trait loci (QTL) were discovered, including eleven stable QTLs on chromosomes 1A, 2D, 4B, 5B, 6B, and 6D. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B exhibited pleiotropic effects for GW, SL, GNS, FSN, SSN, and TSS, with the phenotypic variation explained (PVE) ranging from 5.40 to 37.70%. In addition, an association analysis was conducted using a diverse panel of 205 elite wheat lines with a composite map (24,355 SNPs) based on the Illumina Infinium assay in four environments. A total of 73 significant marker-trait associations (MTAs) were detected for panicle traits, which were distributed across all wheat chromosomes except for 4D, 5D, and 6D. Consensus regions between RAC875_C27536_611 and Tdurum_contig4974_355 on chromosome 4B for GW in multiple environments, between QTSS5A.7-43 and BS00021805_51 on 5A for SD and TSS, and between QSD3A.2-164 and RAC875_c17479_359 on 3A for SL and GNS in multiple environments were detected through linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A, and 6A were identified with high PVE% on a composite map. This study provides potentially valuable information on the dissection of yield-component traits and valuable genetic alleles for molecular-design breeding or functional gene exploration.
  相似文献   

7.
8.

Key message

A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
  相似文献   

9.
Fusarium graminearum Schwabe (Fusarium head blight, FHB) and Puccinia triticina Eriks (leaf rust) are two major fungal pathogens posing a continuous threat to the wheat crop; consequently, identifying resistance genes from various sources is always of importance to wheat breeders. We identified tightly linked single nucleotide polymorphism (SNP) markers for the FHB resistance quantitative trait locus (QTL) Qfhs.pur-7EL and the leaf rust resistance locus Lr19 using genotyping-by-sequencing (GBS) in a wheat–tall wheatgrass introgression-derived recombinant inbred line (RIL) population. One thousand and seven hundred high-confidence SNPs were used to conduct the linkage and QTL analysis. Qfhs.pur-7EL was mapped to a 2.9 cM region containing four markers within a 43.6 cM segment of wheatgrass chromosome 7el2 that was translocated onto wheat chromosome 7DL. Lr19 from 7el1 was mapped to a 1.21 cM region containing two markers in the same area, in repulsion. Five lines were identified with the resistance-associated SNP alleles for Qfhs.pur-7EL and Lr19 in coupling. Two SNP markers in the Qfhs.pur-7EL region were converted into PCR-based KASP markers. Investigation of the genetic characteristics of the parental lines of this RIL population indicated that they are translocation lines in two different wheat cultivar genetic backgrounds instead of 7E–7D substitution lines in Thatcher wheat background, as previously reported in the literature.  相似文献   

10.

Key message

Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding.

Abstract

Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.
  相似文献   

11.

Key message

An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring.

Abstract

Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4–63.0 % for spike length, 48.2–79.6 % for spikelet number per spike, 13.1–48.1 % for plant architecture, and 12.2–26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
  相似文献   

12.
Wild relatives of wheat are an outstanding source of resistance to both abiotic and biotic stresses. In the present study, we evaluated the activity of four antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX)—along with photosynthetic pigments and shoot biomass in 12 AegilopsTriticum accessions with different genomic constitutions and two tolerant and sensitive control varieties under well-watered (WW; 90% FC), moderate (MS; 50% FC) and severe (SS; 25% FC) water stress treatments. The analysis of variance for measured traits indicated highly significant effects of the water stress treatments, accessions, and their interactions. The 12 domesticated and wild relatives of wheat exhibited more variability and greater activity in the expression of antioxidative enzymes than cultivated wheats. While domesticated forms of wheat, T. aestivum (AABBDD) and T. durum (AABB) seem to have a functionally active antioxidant mechanism, other accessions with alien genomes—Ae. umbellulata (UU), Ae. crassa (MMDD), Ae. caudata (CC), Ae. cylindrica (DDCC) and T. boeoticum (AbAb)—respond to water stress by increasing enzymatic antioxidants as the dominant mechanism that contributes to the retention of oxidative balance in the cell. Furthermore, abovementioned accessions with alien genomes had higher photosynthetic pigment contents (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid) under water stress than well-watered conditions. Hence, these accessions could be used in future breeding programs to combine beneficial stress-adaptive characters of alien genomes into synthetic hexaploid wheat varieties in the field, even at limited water supply.  相似文献   

13.
Trehalose 6-phosphate phosphatase (TPP) dephosphorylates trehalose 6-phosphate to trehalose, an important growth regulator, and is involved in starch accumulation and grain yield. In this study, wheat TPP homologs were isolated from chromosomes 6AL, 6BL, and 6DL, designated as TaTPP-6AL1, TaTPP-6BL1, and TaTPP-6DL1, respectively. Sequence alignment showed a single-nucleotide polymorphism (SNP) at TaTPP-6AL1 locus between cultivars with contrasting thousand grain weight (TGW), forming alleles TaTPP-6AL1a and TaTPP-6AL1b, respectively. A cleaved amplified polymorphic sequence (CAPS) marker, TaTPP-6AL1-CAPS, was developed to differentiate the two alleles. TaTPP-6AL1 was mapped within the interval of IWB65749 and IWB60449 in a recombinant inbred line (RIL) population derived from Zhou8425B/Chinese Spring using the wheat 90K SNP assay. A QTL for TGW identified in the interval explained 12.119.1% of the phenotypic variance across five environments. Association analysis on 141 Chinese wheat cultivars also indicated a significant correlation of TaTPP-6AL1 with TGW. In conclusion, TaTPP-6AL1 and its functional marker are valuable to improve grain yield in wheat breeding.  相似文献   

14.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

15.
Leaf rust of wheat, caused by Puccinia triticina, is an important disease throughout the world. The adult plant leaf rust resistance gene Lr48 reported in CSP44 was previously mapped in chromosome 2B, but the marker–gene association was weak. In this study, we confirmed the location of Lr48 to be in the short arm of chromosome 2B and identified closely linked markers suitable for use in breeding. The CSP44/WL711 recombinant inbred line (RIL) population (90 lines) showed monogenic segregation for Lr48. Twelve resistant and 12 susceptible RILs were used for selective genotyping using an iSelect 90K Infinium SNP assay. Closely linked SNPs were converted into Kompetitive allele-specific primers (KASP) and tested on the parental lines. KASP markers giving clear clusters for alternate genotypes were assayed on the entire RIL population. SNP markers IWB31002, IWB39832, IWB34324, IWB72894 and IWB36920 co-segregated with Lr48 and the marker IWB70147 was mapped 0.3 cM proximal to this gene. Closely linked KASP markers were tested on a set of Australian and Nordic wheat genotypes. The amplification of SNP alleles alternate to those linked with Lr48 in the majority of the Australian and Nordic wheat genotypes demonstrated the usefulness of these markers for marker-assisted pyramiding of Lr48 with other rust resistance genes.  相似文献   

16.
Dissecting the genetic basis for the traits of northern-style Chinese steamed bread (NCSB) is of great significance for wheat quality breeding. Quantitative trait loci (QTLs) for the processing quality of NCSB were studied using a recombinant inbred line (RIL) consisting of 173 lines derived from a “Shannong01–35 × Gaocheng9411” cross. Twenty-four putative additive QTLs were detected on chromosomes 1A, 1B, 1D, 3A, 3B, 4A, 4B, 5B, 6B, and 7B. Of these QTLs, QTex1A.1-27, QHei5B.5-488, and QGum4B.4-17 had the highest contribution and accounted for 9.33, 10.9, and 12.0% of the phenotypic variations, respectively. Several co-located QTLs with additive effects were detected on chromosomes 1A, 1D, 4B, and 5B. Two clusters (RFL_CONTIG2160_524-WSNP_CAP12_C2438_1180601 and EX_C101685_705-RAC875_C27536_611) for height, total score, and texture and for chewiness, gumminess, and hardness were detected on chromosomes 1A and 4B, respectively. Two QTLs for chewiness and hardness (QCh1D-4, QHa1D-4) with additive effects were detected; these alleles could be good targets for improving the processing quality of steamed bread from common wheat (Triticum aestivum L.). In addition, QTLs for wheat flour quality and the associated correlations with NCSB were simultaneously analyzed. Negative correlations were detected between chewiness and the wet/dry gluten content (WGC/DGC) or protein content. Two QTLs (QCh4B.4-17 and QPr4B.4-17) and three QTLs (QCh4B.4-13, QWG4B.4-13, and QDG4B.4-13) clustered in the same chromosomal region. The detected QTL clusters should be further investigated during wheat breeding and could be used by breeders to improve wheat quality and especially the processing quality of NCSB.  相似文献   

17.

Key message

The dwarfing gene Rht24 on chromosome 6A acts in the wheat population ‘Solitär × Bussard’, considerably reducing plant height without increasing Fusarium head blight severity and delaying heading stage.

Abstract

The introduction of the Reduced height (Rht)-B1 and Rht-D1 semi-dwarfing genes led to remarkable increases in wheat yields during the Green Revolution. However, their utilization also brings about some unwanted characteristics, including the increased susceptibility to Fusarium head blight. Thus, Rht loci that hold the potential to reduce plant height in wheat without concomitantly increasing Fusarium head blight (FHB) susceptibility are urgently required. The biparental population ‘Solitär × Bussard’ fixed for the Rht-1 wild-type alleles, but segregating for the recently described gibberellic acid (GA)-sensitive Rht24 gene, was analyzed to identify quantitative trait loci (QTL) for FHB severity, plant height, and heading date and to evaluate the effect of the Rht24 locus on these traits. The most prominent QTL was Rht24 on chromosome 6A explaining 51% of genotypic variation for plant height and exerting an additive effect of ? 4.80 cm. For FHB severity three QTL were detected, whereas five and six QTL were found for plant height and heading date, respectively. No FHB resistance QTL was co-localized with QTL for plant height. Unlike the Rht-1 semi-dwarfing alleles, Rht24b did not significantly affect FHB severity. This demonstrates that the choice of semi-dwarfing genes used in plant breeding programs is of utmost consideration where resistance to FHB is an important breeding target.
  相似文献   

18.
One of the most important cucumber diseases is bacterial angular leaf spot (ALS), whose increased occurrence in open-field production has been observed over the last years. To map ALS resistance genes, a recombinant inbred line (RIL) mapping population was developed from a narrow cross of cucumber line Gy14 carrying psl resistance gene and susceptible B10 line. Parental lines and RILs were tested under growth chamber conditions as well as in the field for angular leaf spot symptoms. Based on simple sequence repeat and DArTseq, genotyping a genetic map was constructed, which contained 717 loci in seven linkage groups, spanning 599.7 cM with 0.84 cM on average between markers. Monogenic inheritance of the lack of chlorotic halo around the lesions, which is typical for ALS resistance and related with the presence of recessive psl resistance gene, was confirmed. The psl locus was mapped on cucumber chromosome 5. Two major quantitative trait loci (QTL) psl5.1 and psl5.2 related to disease severity were found and located next to each other on chromosome 5; moreover, psl5.1 was co-located with psl locus. Identified QTL were validated in the field experiment. Constructed genetic map and markers linked to ALS resistance loci are novel resources that can contribute to cucumber breeding programs.  相似文献   

19.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

20.
In order to detect genomic regions with different effects for some of the physiological and biochemical traits of wheat, four experiments were conducted at Research Farm of Agricultural and Natural Resources Research Center of Zabol in 2015–2016 and 2016–2017 growing seasons. The experiments were carried out using four alpha lattice designs with two replications under non-stress and terminal heat stress conditions. Plant materials used in this study included 167 recombinant inbred lines and their parents (‘SeriM82’ and ‘Babax’). Six traits including grain yield (GY), proline content (PRO), water soluble carbohydrates (WSC), maximum efficiency of photosystem II (Fv/Fm), cytoplasmic membrane stability (CMS) and chlorophyll content (CHL) were evaluated. Genetic linkage map consisted of 211 AFLP marker, 120 SSR marker and 144 DArT markers with 1864 cm length and 4.4 cm mean distance. QTL analysis was carried out using a mixed-model-based composite interval mapping (MCIM) method. By the combined analysis of normal phenotypic values, 27 additive QTLs and five pairs of epistatic effects were identified for studied traits, among which two additive and one epistatic QTL showed significant QTL?×?environment interactions. By the combined analysis of stress phenotypic values, a total of 26 QTLs with additive effects and 5 epistatic QTLs were detected, among which one additive and one epistatic QTL showed QTL?×?environment interactions. Six QTLs with major effects (QGY-2B, QGY-2D, QPro-5B, QWSC-4A, QFv/Fm-6A and QCMS-4B), which were common between two conditions could be useful for marker-assisted selection (MAS) in order to develop heat tolerant and high-performance wheat varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号