首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hormone treatments on larvae of the southwestern corn borer, Diatraea grandiosella, was examined to explore endocrine interactions which regulate its mature larval diapause. This species is especially suitable for investigating the endocrine control of larval diapause because it ecdyses from a spotted to an immaculate morph at the onset of diapause, and the immaculate morph may undergo up to three stationary ecdyses during diapause. The response of prediapause larvae to a β-ecdysone injection showed that the larvae have the potential to transform into the immaculate morph early in the final larval instar, but under normal conditions this ecdysis occurs after larvae reach maturity. Since a high rate of pupation occurred among early diapause larvae which received a head ligature, followed 17 days later by a β-ecdysone injection, diapause larvae retain active corpora allata. Since a head ligature prevented diapause larvae from responding to repeated topical applications of a juvenile hormone (JH) mimic or JH 1, the intermediate titer of JH associated with larval diapause may inhibit the synthesis or transport of ecdysiotropin, or its release from the corpora cardiaca. Current results suggest, therefore, that an interaction between the cerebral neurosecretory system and the corpora allata regulates the initiation, maintenance, and termination of this larval diapause.  相似文献   

2.
The possible involvement of juvenile hormone (JH) in controlling the mature larval diapause of the European corn borer, Ostrinia nubilalis, was examined using biological and chemical assays for JH titres, topical applications of JH mimic, and injections of 20-hydroxy-ecdysone. Bioassays of extracts of larval haemolymph showed that (1) 4th instar pre-diapausing larvae had a higher JH titre (ca. 1450 Galleria Units (GU)/ml) than equivalent non-diapausing larvae (ca. 340 GU/ml), and that (2) 5th instar pre-diapausing larvae contained a JH titre of ca. 320 GU/ml, which declined to ca. 90 GU/ml in newly-diapaused larvae. Chemical assasys carried out on extracts of whole larvae showed that early diapausing larvae contained an extremely low titre of JH. In addition, the application of JH mimic or 20-hydroxy-ecdysone or both agents to diapausing larvae failed to reveal the presence of a functional JH titre during diapause. The application of JH mimic to early 5th instar non-diapausing larvae produced moribund larval-pupal intermediates rather than supernumerary larvae. Our results, therefore, suggest that although JH may control some phases of diapause induction, it is not involved in maintaining diapause.  相似文献   

3.
The possible role of juvenile hormone (JH) in the induction and termination of larval diapause in the European corn borer, Ostrinia nubilalis, was investigated using topical applications of both JH I and a JH mimic as well as by monitoring JH titers with the Galleria bioassay. Neither JH nor the JH mimic ZR515 was capable of influencing diapause termination when administered topically. The Galleria bioassay revealed little or no JH in the hemolymph of mid diapause (>30 days) insects, indicating no demonstrable role for JH in diapause maintenance. When ZR515 was administered to nondiapause, newly ecdysed fifth instar larvae the pupal molting cycle was delayed. By use of photoperiodic regimes we were able to show that the molting delay was not equivalent to diapause induction. The Galleria bioassay showed differences in JH titer profiles between diapause and nondiapause animals during the final larval stadium. The nondiapause insects showed titers that decline rapidly to trace amounts following the molt to fifth instar then rose prior to pupation. The diapause insects had generally higher titers and exhibited a more gradual decline after the molt. No evidence was obtained to support the hypothesis that JH plays a key role in the induction, maintenance, or termination of larval diapause.  相似文献   

4.
The cessation of juvenile hormone (JH) production is a key endocrine event that halts ovarian development and hence initiates diapause in females of the mosquito, Culex pipiens. The shutdown in endocrine activity of the corpora allata (CA), the source of JH, was manifested in the smaller size of CA in females reared under short daylengths (diapause) compared to those reared under long daylengths (nondiapause), as well as in low expression of the mRNA encoding allatotropin, the neuropeptide that promotes JH biosynthesis in the CA. Genes encoding both allatotropin and allatostatin were identified in C. pipiens, but only expression levels of allatotropin differed in the two types of females. Knockdown of allatotropin mRNA using RNA interference in females programmed for nondiapause resulted in a cessation of ovarian development akin to diapause. This arrest in development could be reversed with an application of JH. Our results thus suggest that suppression of allatotropin is a critical link in regulating the shutdown of the CA during diapause.  相似文献   

5.
Sesamia nonagrioides (Lepidoptera: Noctuidae) larvae reared under long day (LD; 16L:8D) conditions pupate after 5 or 6 larval instars, whereas under short day (SD; 12L:12D) conditions they undergo up to 12 additional molts before pupating. This extended period of repeated molting is maintained by high levels of juvenile hormone (JH). Previous work demonstrated that both LD and SD larvae decapitated in the 6th instar pupate but further development is halted. By contrast, about one-third of SD larvae from which only the brain has been removed, undergo first a larval molt, then pupate and subsequently developed to the adult stage. Debrained LD larvae molt to larvae exceptionally but regularly pupate and produce adults. Implanted brains may induce several larval molts in debrained recipient larvae irrespectively of the photoperiodic conditions. The results of present work demonstrate that the prothoracic glands (PGs) and the corpora allata (CA) of debrained larvae continue to produce ecdysteroids and JHs, respectively. PGs are active also in the decapitated larvae that lack JH, consistent with the paradigm that CA, which are absent in the decapitated larvae, are the only source of this hormone. Completion of the pupal-adult transformation in both LD and SD debrained insects demonstrates that brain is not crucial for the development of S. nonagrioides but is required for diapause maintenance. Application of JH to headless pupae induces molting, presumably by activating their PGs. It is likely that JH plays this role also in the induction of pupal-adult transformation in debrained insects. Application of the ecdysteroid agonist RH 2485 (methoxyfenozide) to headless pupae also elicits molting: newly secreted cuticle is in some cases thin and indifferent, in other cases it bears distinct pupal or adult features.  相似文献   

6.
Caste differentiation in termites depends on complex hormonal changes during postembryonic development. Juvenile hormone (JH) is a central player in this process. The present study examined histological changes in the main hormone-producing endocrine glands, the corpora allata and molt glands, in the Japanese dampwood termite Hodotermopsis sjostedti. We focused on the soldier caste differentiation pathway, which can be induced artificially using an analogue of JH. The corpora allata exhibited volumetric changes during soldier induction, reflecting variations in the quantity of cytoplasm. Corpora allata from alates and neotenics clearly showed differentiation accompanied by cell proliferation, preparing for the high-level JH production necessary for reproduction. However, the volume increase of corpora allata was not always correlated to high JH titers. In contrast, molt glands degenerated in the reproductive castes. The JH analogue induced hypertrophy of the molt glands, along with the formation of lacunae, possibly related to ecdysteroid production. The JH analogue effect, inducing soldier differentiation, was suggested to require both mimic of high JH titers and stimulation of the molt glands. Received 12 November 2007; revised 2 June 2008; accepted 14 July 2008.  相似文献   

7.
Juvenile hormone III biosynthesis by corpora allata of adult female Leucophaea maderae was measured by an in vitro radiochemical assay. In fed females, JH III synthesis increases more than 20-fold after mating to a peak of 55 pmol/pair/h on day 9 and then rapidly declines. This increase in JH III synthesis concomitant with rapid oocyte growth in mated females is not observed in virgin females. The corpora allata from starved, virgin females appear to be inactive. The addition of 150 microM 2E,6E-farnesol (a) JH III precursor) to the incubation medium stimulates the corpora allata from starved, virgin females less than the corpora allata from starved, mated females. Both feeding and mating are necessary for the expression of a normal cycle of JH III synthesis in this cockroach.  相似文献   

8.
The caterpillars of Sesamia nonagrioides developing under long-day (LD) photoperiod pupate in the 5th or 6th instar whereas under short day (SD) conditions they enter diapause and undergo several extra larval molts. The diapause is terminated within 1-3 instars upon transfer of SD larvae to the LD conditions. Brain removal from the 6th instar larvae promotes pupation followed by imaginal development; however, one third of the SD larvae and 12% of the LD larvae debrained at the start of the instar first undergo 1-2 larval molts. The incidence of larval molts is enhanced by the brain implants. Exclusively pupal molts occur in the LD larvae debrained late in the 6th instar. Decapitation elicits pupation in both LD and SD larvae, except for some of the 4th and 5th and rarely 6th instar that are induced to a fast larval molt. The pupation of decapitated larvae is reverted to a larval molt by application of a juvenile hormone (JH) agonist. No molts occur in abdomens isolated from the head and thorax prior to the wandering stage. Abdomens isolated later undergo a larval (SD insects) or a pupal (LD insects) molt. Taken together the data reveal that in S. nonagrioides (1) several larval molts followed by a pupal and imaginal molt can occur without brain; (2) an unknown head factor outside the brain is needed for the pupal-adult molt; (3) brain exerts both stimulatory and inhibitory effect on the corpora allata (CA); (4) larval molts induced in CA absence suggest considerable JH persistence.  相似文献   

9.
Adult mated females of the viviparous cockroach Diploptera punctata are moderately sensitive to precocenes. Oöcyte growth is inhibited and oviposition is delayed in insects topically treated with precocene II or precocene III. C16 juvenile hormone release by corpora allata of precocene-treated insects is markedly inhibited when compared to corpora allata of acetone-treated controls. Electron microscopy of the corpora allata reveals that precocene treatment results in a disorganisation of the intracellular organelles. Topically applied precocene II reaches a high concentration in the haemolymph (0.5 mM 2 hr after topical application of 250 μg). C16 juvenile hormone release by isolated corpora allata is inhibited by precocenes in vitro; half-maximal inhibition over a 3 hr period is obtained at 0.4 mM precocene II. In vitro inhibition of corpora allata by precocene II concentrations higher than 1 mM rapidly destroys the glands as evidenced by electron microscopy (total disintegration of cellular organelles) and by the virtual cessation of C16 juvenile hormone synthesis by the corpora allata. Inhibition of C16 juvenile hormone release by precocene is time-dependent and is not reversible over the short-term incubation in vitro. This inhibition does not appear to be related to the spontaneous activity of the glands in vitro, and it can be reduced by two epoxidase inhibitors. Precocenes are pro-allatocidins in this species: they are bioactivated within the corpora allata to cytotoxic epoxides.  相似文献   

10.
The hormonal control of the facultative diapause of the codling moth has been investigated. The diapause can be divided into 4 phases or periods: (1) diapause induction by short-day conditions (SD) in young larvae, (2) initiation of the diapause in the early last larval instar by a high titre of juvenile hormone, (3) onset and maintenance of diapause with inactivity of the neuroendocrine system, as evidenced by the results of neck-ligation experiments, (4)termination of diapause by the production of ecdysteroid.Diapause-induced larvae pupated after spinning the cocoon, if the state of induction was changed by injection with the anti-juvenile hormone precocene II at the beginning of the last larval instar and subsequent results of neck-ligation experiments, (4) termination of diapause by the production of ecdysteroid. treated with juvenile hormone during the first 1.5 days after the last larval moult and subsequently reared under SD. Under LD, continuous application of juvenile hormone during the last larval instar and after spinning did not prevent the insects from moulting to either a supernumerary larva, a pupa or a larval-pupal intermediate. Termination of diapause, i.e. pupation, was achieved by injecting diapausing larvae with 20-hydroxyecdysone. Although juvenile hormone was found to have a prothoractropic effect in diapausing larvae, no pupal moult could be induced by the application of the hormone. Contrary to the hormonal situation before pupation of nondiapausing larvae, no juvenile hormone could be detected before or during the pupation of larvae after diapause.  相似文献   

11.
In the Savio strain of Locusta migratoria an imaginai diapause is induced by long daylength. In diapausing females, the haemolymph level of juvenile hormone (JH) was undetectable during the first 3-wk of imaginai life and later rose only slightly to about 20 ng/JH3IR per ml. Only peripheral cells of the corpora aliata (CA) were active. In nondiapausing animals, or after the termination of diapause, the JH level was high (140–200 ng/ml) and the ultrastructure of the gland exhibited signs of activity. CA severance in 3-wk-old diapausing females terminated diapause as a result of activation of the CA. CA disconnection in the fifth larval instar or at the imaginai moult in long daylength animals did not break diapause and the CA stayed inactive. The lateral cells of the protocerebrum exert a jdual effect: at the end of larval life they bring about CA maturation and render them active, whereas during the imaginai diapause they inhibit CA activity. The median neurosecretory cells of the pars intercerebralis support CA activity during vitellogenesis.  相似文献   

12.
The activity of the substance(s) which are contained in the cephalic endocrine organs of the locust which induce egg diapause in Bombyx mori was examined by implantation and injection of saline extracts of these organs. Extracts from the median and lateral neurosecretory parts of the locust brain were not effective in inducing egg diapause. Extracts of the corpora cardiaca, corpora allata, and suboesophageal ganglion of the locust induced diapause eggs in Bombyx pharate adults from which the suboesophageal ganglion had been removed. The first two extracts could induce egg diapause even in isolated abdomens of pharate adults of Bombyx. In the locust corpora cardiaca, the activity was present only in the glandular lobe and not in the nervous region. This activity decreased when the nervi corporis cardiaci I and II and of nervi corporis allati I were cut. Allatectomy also brought about a decrease in the activity in the glandular lobe which could not be restored by the injection of juvenile hormone. The activity in the corpora allata was enhanced slightly by the disconnection though not significantly.From these results, it is assumed that the corpora cardiaca, corpora allata and suboesophageal ganglion of the locust contain and active principle(s) capable of inducing egg diapause in Bombyx mori. The nervous connections between the brain, corpora cardiaca, and corpora allata are essential for the accumulation of the active substance(s) in the glandular lobes of the corpora cardiaca.  相似文献   

13.
Abstract. The role of Juvenile Hormone (JH) during reproductive development and diapause was investigated in the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae). JH sythesized by corpora allata (CA) in vitro of A.grandis was identified as JH-UJ by high-performance liquid chromatography and by conversion to the methoxyhydrin. Optimal conditions for the use of a short-term assay in vitro were established to examine profiles of CA activity. In addition, rates of JH degradation by JH-specific esterase were determined. Patterns of CA and JH-esterase activity during reproductive development and the diapause state were established with laboratory-reared reproductive weevils and diapausing weevils collected as larvae and pupae in the field after the cotton-growing season. The results indicate that JH production is elevated in reproductive females whereas males and winter field-collected females show no CA activity. Vitellogenin concentrations in haemolymph and rates of oviposition were studied in relation to CA activity and JH degradation. An attempt to induce diapause in the laboratory failed.  相似文献   

14.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

15.
16.
A mutant of the tobacco hornworm, Manduca sexta, was found to form black melanized cuticle in the last larval instar. This black phenotype is due to a single sex-linked gene whose expression can be changed by one or more modifier genes. The expression of the mutant phenotype is prevented by juvenile hormone (JH) application at the time of head cap apolysis during the moulting cycle to the last larval instar. The bl mutant is equally as sensitive to JH at this time as is a neck-ligated wild type larva, ruling out an absence of hormone receptors or a difference in JH metabolism. The bl corpora allata were found to be less active at this time than were those of the wild type larva, suggesting that the defect resides in the control of the corpora allata. Since selection for complete expression of the bl phenotype is easy, this mutant provides the basis for an ultrasensitive JH bioassay to be described in a forthcoming paper.  相似文献   

17.
Assay conditions for the short-term, radiochemical, in vitro determination of the spontaneous rate of juvenile biosynthesis by isolated corpora allata from Leptinotarsa decemlineata have been further improved, permitting the measurement of juvenile hormone biosynthesis by individual pairs of corpora allata. The final incubation product has been identified as juvenile hormone III with the aid of High-performance liquid chromatography (HPLC) and juvenile hormone esterase degradation. Using the new assay conditions, the activities of adult corpora allata during maturation were found to be significantly higher in reproductive, long-day animals than in pre-diapause, short-day beetles. During diapause no activity was detectable, whereas corpora allata from post-diapause beetles were reactivated totally after 5 days. Simultaneous determination of the in vitro rates of juvenile hormone biosynthesis and corpus allatum volumes revealed no clear correlation although the results suggest that the volume may be indicative of the maximal capacity for juvenile hormone production. Corpora allata from a population of beetles did not display any synchronous diurnal rhythmicity.  相似文献   

18.
A radioimmunoassay (RIA) for juvenile hormone III has been established which quantifies the biosynthesis of this hormone in vitro by the corpora allata of larvae and pupae of the tobacco hornworm, Manduca sexta. The specificity of the RIA for homologues and metabolites of juvenile hormone III was determined and it was found that the antibody was specific for juvenile hormone III and its acid. The juvenile hormone III RIA activity synthesized in vitro by corpora allata from day-5 last-instar larvae was identified as juvenile hormone III by high pressure liquid chromatography. The kinetics of hormone synthesis by corpora allata from selected stages during larval-pupal development revealed differential rates of synthesis, suggesting that juvenile hormone III may have a hormonal function in the larva and that regulation of its synthesis may occur. The significance of these developmental fluctuations in rates of juvenile hormone III synthesis by the corpora allata is discussed in relation to the haemolymph titres of the hormone.  相似文献   

19.
At 22°C and under a long-day photoperiod of L:D 16:8, all the last fifth instar Loxostege sticticalis larvae undergo prepupal stage and pupate without diapause. Under a short-day photoperiod of L:D 12:12, in contrast, they all enter diapause with approximately 36 days diapause maintenance and then terminate diapause spontaneously, although only 44% of the larvae terminated diapause successfully. Changes in hemolymph juvenile hormone (JH I) titers of diapause-destined larvae across diapause induction, maintenance and termination were examined using HPLC, and were compared with those of non-diapause-destined larvae from the fifth instar through pupation. JH I titer of the earliest fifth instar diapause-destined larvae remained at a high level with a peak of 220.4 ng/ml, though it decreased continuously to a minimum of 69.0 ng/ml on day 5 in the fifth instar when the larvae stopped feeding to enter diapause. During the diapause maintenance, JH I titer of the mature larvae increased significantly and maintained a high level until day 31 in prepupae. JH I titer declined and fluctuated at low level from 5 days before pupation. In contrast, JH I titer of both the fifth instar non-diapause-destined larvae and prepupae remained and fluctuated at low level consistently, as well as decreased before pupation. These results indicate that diapause induction and maintenance in this species might be a consequence of high JH, whereas diapause termination can be attributed to low JH titer, which was in agreement with the hormonal regulation observed in many other larval-diapausing insects.  相似文献   

20.
Oögenesis and the physiological activity of the corpora allata were studied in adult females of the Egyptian locust (Anacridium aegyptium), in ovarian diapause, after electrical stimulation in vivo of the pars intercerebralis. This stimulation provokes (1) a decrease in the quantity of fuchsinophilic material present in the median neurosecretory cell bodies and in the internal cardiac tract, (2) an increase in the physiological activity of the corpora allata (measured by its chromatropic effect on larvae of Locusta), and (3) rupture of the ovarian diapause (advance of maturation of the oöcytes and oviposition by 5 months, and initiation of the ovarian cycle).In the control animals, the same electrical stimulations of various regions of the central nervous system (tritocerebrum, first ganglion of the abdominal cord) have no effect on these phenomena.In allatectomized females, electrical stimulations of the pars intercerebralis are followed by a slight growth of oöcytes, without a deposit of yellow vitellus. The diapause is not broken. Section of the allatocardiac nerves or rupture of the allatocardiac and allato-suboesophageal nervous connexions do not change the physiological state of the corpora allata. In the case of females in which the corpora allata have been disconnected, electrical stimulations of the pars intercerebralis succeed in activating the corpora allata and breaking the ovarian diapause. The aggregate of these results confirms that in locusts the control of the brain over the physiological activity of the corpora allata is above all neuroendocrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号