首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
Differentiation of skeletal muscle involves withdrawal of myoblasts from the cell cycle, fusion to form myotubes, and the coordinate expression of a variety of muscle-specific gene products. Fibroblast growth factor and type beta transforming growth factor specifically inhibit myogenesis; however, the transmembrane signaling pathways responsible for suppression of differentiation by these growth factors remain elusive. Because ras proteins have been implicated in the transduction of growth factor signals across the plasma membrane, we used DNA-mediated gene transfer to investigate the potential involvement of this family of regulatory proteins in the control of myogenesis. Transfection of the mouse skeletal muscle cell line C2 with the oncogenic forms of H-ras or N-ras completely suppressed both myoblast fusion and induction of the muscle-specific gene products nicotinic acetylcholine receptor and creatine kinase. Inhibition of differentiation by activated ras genes occurred at the level of muscle-specific mRNA accumulation. In contrast, proto-oncogenic forms of N-ras or H-ras had no apparent effects on the ability of C2 cells to differentiate. Myoblasts transfected with activated ras genes exhibited normal growth properties and ceased proliferating in the absence of mitogens, indicating that ras inhibited differentiation through a mechanism independent of cell proliferation. These results demonstrate that activated ras gene products mimic the inhibitory effects of fibroblast growth factor and type beta transforming growth factor on myogenic differentiation and suggest that each of these regulators of myogenesis may operate through a common intracellular pathway.  相似文献   

2.
3.
M Davis  S Malcolm  A Hall    C J Marshall 《The EMBO journal》1983,2(12):2281-2283
The N-ras gene is a transforming gene isolated from a variety of human tumour cell lines and is a member of a family of related ras genes. Somatic cell hybrids have previously shown that the N-ras gene is located on chromosome 1. We have confirmed this localisation by in situ hybridisation to metaphase preparations of lymphocytes and localised the gene to the region 1cen - p21. A survey has found 47 reported cases of malignancy involving deletions in the short arm of chromosome 1. Fifteen of the 47 involved a deletion in this region.  相似文献   

4.
Structure and activation of the human N-ras gene   总被引:46,自引:0,他引:46  
E Taparowsky  K Shimizu  M Goldfarb  M Wigler 《Cell》1983,34(2):581-586
The normal human N-ras gene has been cloned. In structure and sequence it closely resembles the human H-ras and K-ras genes. The three genes share regions of nucleotide homology and nucleotide divergence within coding sequences and have a common intron/exon structure, indicating that they have evolved from a similarly spliced ancestral gene. The N-ras gene of SK-N-SH neuroblastoma cells has transforming activity, while the normal N-ras gene does not, the result of a single nucleotide change substituting lysine for glutamine in position 61 of the N-ras gene product. From previous studies we conclude that amino acid substitutions in two distinct regions can activate the transforming potential of ras gene products.  相似文献   

5.
The identification of transforming genes in human tumor cells has been made possible by DNA mediated gene transfer techniques. To date, it has been possible to show that most of these transforming genes are activated cellular analogues of the ras oncogene family. To better understand the relationship between these oncogenes and other human genes, we have determined their chromosomal localization by analyzing human rodent somatic cell hybrids with molecularly cloned human proto-oncogene probes. It was possible to assign N-ras to chromosome 1 and regionally localize c-K-ras-1 and c-K-ras-2 to human chromosomes 6pter-q13 and 12q, respectively. These results along with previous studies demonstrate the highly dispersed nature of ras genes in the human genome. Previous reports indicated that the c-myb gene also resides on chromosome 6. It has been possible to sublocalize c-myb to the long arm of chromosome 6 (q15-q21). The non-random aberrations in chromosomes 1, 6 and 12 that occur in certain human tumors suggest possible etiologic involvement of ras and/or myb oncogenes in such tumors.  相似文献   

6.
The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, we have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10(4) foci per microgram of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, we found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which we had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo (M. Souyri, C. F. Koehne, P. V. O'Donnel, T. H. Aldrich, M. E. Furth, and E. Fleissner, Virology 158:69-78). However, similarly poor oncogenicity was also observed when the v-H-ras coding sequence was inserted in pSV(X) vector, which indicated that the vector sequences play a crucial role in the pathogenicity of a given oncogene. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.  相似文献   

7.
H Paterson  B Reeves  R Brown  A Hall  M Furth  J Bos  P Jones  C Marshall 《Cell》1987,51(5):803-812
To investigate whether the activated N-ras oncogene of HT1080 human fibrosarcoma cells contributes to the expression of the transformed phenotype, we have isolated flat revertants. In two independent revertant lines, an increase in chromosomal ploidy occurred without a concomitant increase in the number of copies of the N-ras transforming allele. Immunoprecipitation confirms that the level of the mutant N-ras p21 gene product in the revertants is correspondingly lower than in HT1080. Analysis of sporadic tumors derived from the revertant cells reveals an increased dosage of the transforming allele. The revertants also retransform after transfection of cloned activated ras oncogenes. These results imply direct participation of an N-ras oncogene in maintaining the transformed phenotype of a human tumor cell line.  相似文献   

8.
The oncogene of the HL-60 human promyelocytic leukemia cell line has been passed serially through NIH/3T3 mouse fibroblasts. Oncogene-specific probes prepared from the resulting tertiary transfectants by molecular cloning have been used to show that loss of the transfected oncogene from NIH/3T3 cells correlates with reversion to nontransformed morphology. Analysis of cells transfected by the oncogenes of other tumors and tumor cell lines indicates that the transforming gene of the HL-60 leukemia cell line is closely related to oncogenes of a Burkitt's lymphoma, an acute myelogenous leukemia, an adenocarcinoma of the colon, a neuroblastoma, and two sarcomas. This oncogene is distantly related to the viral oncogenes of Kirsten and Harvey sarcoma viruses. It has been termed N-ras. The active N-ras oncogene coexists with altered versions of the myc oncogene in the HL-60 and AW Ramos human tumors. This suggests a multistep mechanism involving both ras and myc genes in the creation of these tumors.  相似文献   

9.
We examined the expression of the ras gene family (Ha-ras, Ki-ras, N-ras) in human fetal tissues (14 week) and in several human tumor cell lines. Dot blot hybridization showed that the three ras genes were expressed in all of the samples analysed, with a range of expression between 10 and 180 molecules/cell. There was no correlation between levels of expression of ras genes and the type of ras gene activated in different tumor types.  相似文献   

10.
T Finkel  C J Der  G M Cooper 《Cell》1984,37(1):151-158
A comparison of proteins encoded by normal human ras genes and by mutant rasH or rasK genes activated in human carcinomas revealed no changes in subcellular localization, posttranslational modification, or guanine nucleotide binding associated with activation. Subcellular fractionation indicated that both normal and activated ras proteins were associated exclusively with the membrane fraction. Furthermore, both normal and activated ras proteins exhibited similar degrees of posttranslational acylation. The KD for dGTP binding was 1.0-2.2 X 10(-8) M, with no consistent differences between normal and activated ras proteins. In addition, a survey of 13 possible competing nucleotides revealed no differences in the specificity of nucleotide binding associated with ras gene activation. These results indicate that structural mutations which activate ras gene transforming activity do not alter the protein's known biochemical parameters and in particular do not affect the protein's intrinsic ability to bind guanine nucleotides.  相似文献   

11.
12.
Differential expression of the ras gene family in mice.   总被引:23,自引:5,他引:18       下载免费PDF全文
  相似文献   

13.
A surgically removed human stomach cancer with the histological diagnosis of poorly differentiated adenocarcinoma contained an activated N-ras oncogene detected by an in vivo selection assay in nude mice using transfected NIH3T3 cells. Analysis using synthetic 20-mer oligonucleotide probes revealed a point mutation from G to C at the first letter of codon 13 of the N-ras gene resulting in the substitution of arginine for glycine. This is the first observation of an activated N-ras oncogene in human stomach cancers.  相似文献   

14.
We have surveyed a panel of induced murine lymphomas for c-ras gene mutations. The K-ras gene seems to be preferentially activated in our system, and there are at least two examples of concomitant K- and N-ras gene mutations in the same tumor. This indicates that in some cases additional ras mutations may contribute to tumorigenesis and is evidence for a role of ras activation in tumor progression.  相似文献   

15.
Transforming activity of mutant human p53 alleles   总被引:6,自引:0,他引:6  
Mutant forms of the p53 gene have been shown to cooperate with an activated ras gene in transforming primary cells in culture. The aberrant proteins encoded by p53 mutants are thought to act in a dominant negative manner in these assays. In vivo data, however, reveal that where p53 has undergone genetic change in tumors, both alleles have been affected. We previously identified a case of human acute myelogenous leukemia (AML) in which both alleles of the p53 gene had undergone independent missense mutations (at codons 135 cys to ser and 246 met to val). In these blasts, p53 mutations appear to be acting recessively. We have assayed the transforming potential of these p53 mutations, as well as that of another mutation at codon 273, also identified in a human neoplasm. Both mutations from the AML blasts (codon 135 and codon 246) confer transforming ability on the mutant protein. While transformation assays may define functionally different subsets of p53 mutations, the overexpression phenotype of mutants in this assay may not accurately reflect the pathological effects of p53 mutations in vivo.  相似文献   

16.
We describe the detection and characterization of an activated c-N-ras allele from a gamma-radiation-induced canine acute nonlymphocytic leukemia (ANLL). The activated allele was detected by use of the NIH3T3 transfection/transformation assay. The leukemia DNA had a transforming activity of 0.0125 foci/microgram. By the use of a double anti-ras antibody enzyme-linked immunoblot assay, we have dissected the lesion within the activated c-N-ras allele. Aspartic acid has been substituted for the normal glycine at position 12 in the activated p21c-N-ras. The expression of the mutant p21ras has also been detected in an in vivo passage of the radiation-induced canine ANLL from which the activated c-N-ras allele was isolated. We have demonstrated sufficient homology between canine c-N-ras genes and the human cDNA c-N-ras clone, p6a1, that allows this probe to be used in Southern blotting of canine tissues. In addition, anti-ras antibodies generated against both murine and human ras antigens are capable of detecting canine p21ras species.  相似文献   

17.
p21ras is palmitoylated on a cysteine residue near the C-terminus. Changing Cys-186 to Ser in oncogenic forms produces a non-palmitoylated protein that fails to associate with membranes and does not transform NIH 3T3 cells. To examine whether palmitate acts in a general way to increase ras protein hydrophobicity, or is involved in more specific interactions between p21ras and membranes, we constructed genes that encode non-palmitoylated ras proteins containing myristic acid at their N-termini. Myristoylated, activated ras, without palmitate (61Leu/186Ser) exhibited both efficient membrane association and full transforming activity. Unexpectedly, we found that myristoylated forms of normal cellular ras were also potently transforming. Myristoylated c-ras retained the high GTP binding and GTPase characteristic of the cellular protein and, moreover, bound predominantly GDP in vivo. This implied that it continued to interact with GAP (GTPase-activating protein). While the membrane binding induced by myristate permitted transformation, only palmitate produced a normal (non-transforming) association of ras with membranes and must therefore regulate ras function by some unique property that myristate does not mimic. Myristoylation thus represents a novel mechanism by which the ras proto-oncogene protein can become transforming.  相似文献   

18.
ras proto-oncogenes are activated by point mutation in a wide variety of human and animal tumors, making ras gene analysis a major area of clinical and basic cancer research. Activating point mutations, in each of the three ras genes (Ha-, Ki-, or N-ras), usually occur in one of three specific codons (12, 13, or 61). Thus, an adequate assessment of activating ras gene mutations should include the analysis of at least nine codons. We have developed a rapid method for point mutation analysis of the ras genes, which involves simultaneous (multiplex) PCR amplification of all three homologous ras genes (in the regions surrounding codons 12-13 and codon 61) in a single reaction starting with only 1 microgram of genomic DNA. Although multiplex PCR has been previously used for unrelated sequences, we demonstrate here that multiplex PCR can also be used for highly homologous sequences. Importantly, after coamplification, each of the homologous ras genes can be individually and specifically sequenced even though the other two closely related genes are present in the same template mixture, by using high-stringency conditions permitted by Taq DNA polymerase. An automated multicycle DNA sequencing procedure is used to allow the double-stranded PCR products to be sequenced directly without the need to generate single-stranded templates, further simplifying the protocol. Our multiplex PCR amplification and direct DNA sequencing procedures should greatly facilitate more complete analyses of activating ras gene point mutations, particularly in studies involving many tumor samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
以原发肝癌及肝癌7402细胞株DNA转染NIH/3T3得到的转化细胞与材料,经~(35)S-甲硫氨酸参入,应用放射免疫吸附,聚丙烯酰胺凝胶电泳技术,发现原发性肝癌的转化细胞株中N-ras基因的表达产物p21明显高于非转化的细胞。7402细胞株和7402转化的细胞株可能存在有二个ras基因,一个是ras~N;另一个是ras~H。本文结果为证明N-ras是人肝癌的一种转化基因提供了证据。  相似文献   

20.
Activation of a human c-K-ras oncogene   总被引:9,自引:3,他引:6       下载免费PDF全文
The human lung carcinomas PR310 and PR371 contain activated c-K-ras oncogenes. The oncogene of PR371 was found to present a mutation at codon 12 of the first coding exon which substitutes cysteine for glycine in the encoded p21 protein. We report here that the transforming gene of PR310 tumor contains a mutation in the second coding exon. An A----T transversion at codon 61 results in the incorporation of histidine instead of glutamine in the c-K-ras gene product. By constructing c-K-ras/c-H-ras chimeric genes we show that this point mutation is sufficient to confer transforming potential to ras genes, and that a hybrid ras gene coding for a protein mutant at both codons 12 and 61 is also capable of transforming NIH3T3 cells. The relative transforming potency of p21 proteins encoded by ras genes mutant at codons 12, 61 or both has been analyzed. Our studies also show that the coding exons of ras genes, including the fourth, can be interchanged and the chimeric p21 ras proteins retain their oncogenic ability in normal rodent established cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号