首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified an amino acid transporter that is associated with the cystinuria-related type II membrane glycoprotein, rBAT (related to b(0,+) amino acid transporter). The transporter designated BAT1 (b(0, +)-type amino acid transporter 1) from rat kidney was found to be structurally related to recently identified amino acid transporters for system L, system y(+)L, and system x(-)C, which are linked, via a disulfide bond, to the other type II membrane glycoprotein, 4F2hc (4F2 heavy chain). In the nonreducing condition, a 125-kDa band, which seems to correspond to the heterodimeric complex of BAT1 and rBAT, was detected in rat kidney with anti-BAT1 antibody. The band was shifted to 41 kDa in the reducing condition, confirming that BAT1 and rBAT are linked via a disulfide bond. The BAT1 and rBAT proteins were shown to be colocalized in the apical membrane of the renal proximal tubules where massive cystine transport had been proposed. When expressed in COS-7 cells with rBAT, but not with 4F2hc, BAT1 exhibited a Na(+)-independent transport of cystine as well as basic and neutral amino acids with the properties of system b(0,+). The results from the present investigation were used to establish a family of amino acid transporters associated with type II membrane glycoproteins.  相似文献   

2.
The expression of the activity of cystine/glutamate exchange transporter, designated system x(c)(-), requires two components, xCT and 4F2 heavy chain (4F2hc) in Xenopus oocytes. rBAT (related to b(0,+) amino acid transporter) has a significant homology to 4F2hc and is known to be located in the apical membrane of epithelial cells. To determine whether xCT can associate with rBAT and express the activity of system x(c)(-), xCT, and rBAT were co-expressed in Xenopus oocytes and in mammalian cultured cells. In the oocytes injected with rBAT cRNA alone, the activities of cystine and arginine transport were induced, indicating that the system b(0,+)-like transporter was expressed by associating the exogenous rBAT with an endogenous b(0,+)AT-like factor as reported previously. In the oocytes injected with xCT and rBAT cRNAs, the activity of cystine transport was further induced. This induced activity of cystine transport was partially inhibited by glutamate or arginine and completely inhibited by adding both amino acids. In these oocytes, the activity of glutamate transport was also induced and it was strongly inhibited by cystine. In NIH3T3 cells transfected with xCT cDNA alone, the activity of cystine transport was significantly increased, and in the cells transfected with both xCT and rBAT cDNAs, the activity of cystine transport was further enhanced. The enhanced activity was Na(+)-independent and was inhibited by glutamate and homocysteate. These results indicate that rBAT can replace 4F2hc in the expression of the activity of system x(c)(-) and suggest that system x(c)(-) activity could be expressed in the apical membrane of epithelial cells.  相似文献   

3.
We identified a novel amino acid transporter designated Asc-2 (for asc-type amino acid transporter 2). Asc-2 exhibited relatively low but significant sequence similarity to the members of the heterodimeric amino acid transporters. The cysteine residue responsible for the disulfide bond formation between transporters (light chains) and heavy chain subunits in the heterodimeric amino acid transporters is conserved for Asc-2. Asc-2 is, however, not colocalized with the already known heavy chains such as 4F2 heavy chain (4F2hc) or related to b(0,+) amino acid transporter (rBAT) in mouse kidney. Because Asc-2 solely expressed or coexpressed with 4F2hc or rBAT did not induce functional activity, we generated fusion proteins in which Asc-2 is connected with 4F2hc or rBAT. The fusion proteins were sorted to the plasma membrane and expressed the function corresponding to the Na(+)-independent small neutral amino acid transport system asc. Distinct from the already identified system asc transporter Asc-1 which is associated with 4F2hc, Asc-2-mediated transport is less stereoselective and did not accept some of the high affinity substrates of Asc-1 such as alpha-aminoisobutyric acid and beta-alanine. Asc-2 message was detected in kidney, placenta, spleen, lung, and skeletal muscle. In kidney, Asc-2 protein was present in the epithelial cells lining collecting ducts. In the Western blot analysis on mouse erythrocytes and kidney, Asc-2 was detected as multiple bands in the nonreducing condition, whereas the bands shifted to a single band at lower molecular weight, suggesting the association of Asc-2 with other protein(s) via a disulfide bond. The finding of Asc-2 would lead to the establishment of a new subgroup of heterodimeric amino acid transporter family which includes transporters associated not with 4F2hc or rBAT but with other unknown heavy chains.  相似文献   

4.
A cDNA was isolated from the mouse brain that encodes a novel Na(+)-independent neutral amino acid transporter. The encoded protein, designated as Asc-1 (asc-type amino acid transporter 1), was found to be structurally related to recently identified mammalian amino acid transporters for the transport systems L, y(+)L, x(C)(-), and b(0,+), which are linked, via a disulfide bond, to the type II membrane glycoproteins, 4F2 heavy chain (4F2hc), or rBAT (related to b(0,+) amino acid transporter). Asc-1 required 4F2hc for its functional expression. In Western blot analysis in the nonreducing condition, a 118-kDa band, which seems to correspond to the heterodimeric complex of Asc-1 and 4F2hc, was detected in the mouse brain. The band shifted to 33 kDa in the reducing condition, confirming that Asc-1 and 4F2hc are linked via a disulfide bond. Asc-1-mediated transport was not dependent on the presence of Na(+) or Cl(-). Although Asc-1 showed a high sequence homology (66% identity at the amino acid level) to the Na(+)-independent broad scope neutral amino acid transporter LAT2 (Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y. (1999) J. Biol. Chem. 274, 19745-19751), Asc-1 also exhibited distinctive substrate selectivity and transport properties. Asc-1 preferred small neutral amino acids such as Gly, L-Ala, L-Ser, L-Thr, and L-Cys, and alpha-aminoisobutyric acid as substrates. Asc-1 also transported D-isomers of the small neutral amino acids, in particular D-Ser, a putative endogenous modulator of N-methyl-D-aspartate-type glutamate receptors, with high affinity. Asc-1 operated preferentially, although not exclusively, in an exchange mode. Asc-1 mRNA was detected in the brain, lung, small intestine, and placenta. The functional properties of Asc-1 seem to be consistent with those of a transporter subserving the Na(+)-independent small neutral amino acid transport system asc.  相似文献   

5.
We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.  相似文献   

6.
7.
We provide evidence here that b(0,+) amino acid transporter (b(0, +)AT) interacts with 4F2 heavy chain (4F2hc) as well as with the protein related to b(0,+) amino acid transporter (rBAT) to constitute functionally competent b(0,+)-like amino acid transport systems. This evidence has been obtained by co-expression of b(0, +)AT and 4F2hc or b(0,+)AT and rBAT in human retinal pigment epithelial cells and in COS-1 cells. The ability to interact with 4F2hc and rBAT is demonstrable with mouse b(0,+)AT as well as with human b(0,+)AT. Even though both the 4F2hc x b(0,+)AT complex and the rBAT x b(0,+)AT complex exhibit substrate specificity that is characteristic of system b(0,+), these two complexes differ significantly in substrate affinity. The 4F2hc x b(0,+)AT complex has higher substrate affinity than the rBAT x b(0,+)AT complex. In situ hybridization studies demonstrate that the regional distribution pattern of mRNA in the kidney is identical for b(0,+)AT and 4F2hc. The pattern of rBAT mRNA expression is different from that of b(0,+)AT mRNA and 4F2hc mRNA, but there are regions in the kidney where b(0,+)AT mRNA expression overlaps with rBAT mRNA expression as well as with 4F2hc mRNA expression.  相似文献   

8.
Amino acid transport in mammalian plasma membranes is mediated by a multiplicity of amino acid transport systems. Some of them (systems L, y+ L, x(c)- and b(o,+)) are the result of the activity of heteromeric amino acid transporters (HAT) (i.e. transport activity is elicited by the coexpression of a heavy and a light subunit). The two heavy subunits known today (HSHAT: rBAT and 4F2hc) were identified in 1992, and light subunits (LSHAT: LAT-1, LAT-2, asc-1, y+ LAT-1, y+ LAT-2, xCT and b(o,+)AT) have been cloned in the last 2 years. Defects in two genes of this family (SLC3A1, encoding rBAT and SLC7A9, encoding b(o,+)AT) are responsible for cystinuria, an inherited aminoaciduria of cystine and dibasic amino acids. This finding and functional studies of rBAT and b(o,+)AT suggested that these two proteins encompassed the high-affinity renal reabsorption system of cystine. In contrast to this view, immunofluorescence studies showed that rBAT is most abundant in the proximal straight tubule, and b(o,+)AT is most abundant in the proximal convoluted tubule of the nephron. The need for a new light subunit for rBAT and a heavy subunit for b(o,+)AT is discussed.  相似文献   

9.
10.
Amino acid transport in mouse peritoneal macrophages is mediated by several membrane carriers with different substrate specificity and sensitivity to environmental stimuli. We reported previously that transport activities of cystine and arginine in the macrophages were induced markedly by low concentrations of bacterial lipopolysaccharide (LPS). It is known that a variety of macrophage functions are affected by ambient oxygen tension. In this study, we have investigated the effects of oxygen on the induction of amino acid transport activity by LPS and found that the induction of cystine, but not arginine, transport activity was dependent on the ambient oxygen tension. When the macrophages were cultured with 2% O(2) in the presence of 1 ng/ml LPS, induction of cystine transport activity was reduced by approximately 70% compared with cells cultured under normoxic conditions. In macrophages, transport of cystine is mediated by a Na(+)-independent anionic amino acid transporter named system x(c)(-). System x(c)(-) is composed of two protein components, xCT and 4F2hc, and the expression of xCT was closely correlated with system x(c)(-) activity. A putative NF-kappaB binding site was found in the 5'-flanking region of the xCT gene, but the enhanced expression of xCT by LPS and oxygen was not mediated by NF-kappaB binding. An increase in intracellular GSH in macrophages paralleled induction of xCT, but not gamma-glutamylcysteine synthetase. These results suggest the importance of system x(c)(-) in antioxidant defense in macrophages exposed to LPS and oxidative stress.  相似文献   

11.
xCT, the core subunit of the system x(c)(-) high affinity cystine transporter, belongs to a superfamily of glycoprotein-associated amino acid transporters. Although xCT was shown to promote cystine transport in Xenopus oocytes, little work has been done with mammalian cells (Sato, H., Tamba, M., Ishii, T., and Bannai, S. J. Biol. Chem. 274, 11455-11458, 1999). Therefore, we have constructed mammalian expression vectors for murine xCT and its accessory subunit 4F2hc and transfected them into HEK293 cells. We report that this transporter binds cystine with high affinity (81 microM) and displays a pharmacological profile expected for system x(c)(-). Surprisingly, xCT transport activity in HEK293 cells is not dependent on the co-expression of the exogenous 4F2hc. Expression of GFP-tagged xCT indicated a highly clustered plasma membrane and intracellular distribution suggesting the presence of subcellular domains associated with combating oxidative stress. Our results indicate that HEK293 cells transfected with the xCT subunit would be a useful vehicle for future structure-function and pharmacology experiments involving system x(c)(-).  相似文献   

12.
We have isolated a cDNA from rat small intestine that encodes a novel Na+-independent neutral amino acid transporter with distinctive characteristics in substrate selectivity and transport property. The encoded protein, designated L-type amino acid transporter-2 (LAT-2), shows amino acid sequence similarity to the system L Na+-independent neutral amino acid transporter LAT-1 (Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H. (1998) J. Biol. Chem. 273, 23629-23632) (50% identity) and the system y+L transporters y+LAT-1 (47%) and KIAA0245/y+LAT-2 (45%) (Torrents, D., Estevez, R., Pineda, M., Fernandez, E., Lloberas, J., Shi, Y.-B., Zorzano, A., and Palacin, M. (1998) J. Biol. Chem. 273, 32437-32445). LAT-2 is a nonglycosylated membrane protein. It requires 4F2 heavy chain, a type II membrane glycoprotein, for its functional expression in Xenopus oocytes. LAT-2-mediated transport is not dependent on Na+ or Cl- and is inhibited by a system L-specific inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), indicating that LAT-2 is a second isoform of the system L transporter. Compared with LAT-1, which prefers large neutral amino acids with branched or aromatic side chains, LAT-2 exhibits remarkably broad substrate selectivity. It transports all of the L-isomers of neutral alpha-amino acids. LAT-2 exhibits higher affinity (Km = 30-50 microM) to Tyr, Phe, Trp, Thr, Asn, Ile, Cys, Ser, Leu, Val, and Gln and relatively lower affinity (Km = 180-300 microM) to His, Ala, Met, and Gly. In addition, LAT-2 mediates facilitated diffusion of substrate amino acids, as distinct from LAT-1, which mediates amino acid exchange. LAT-2-mediated transport is increased by lowering the pH level, with peak activity at pH 6.25, because of the decrease in the Km value without changing the Vmax value. Because of these functional properties and a high level of expression of LAT-2 in the small intestine, kidney, placenta, and brain, it is suggested that the heterodimeric complex of LAT-2 and 4F2 heavy chain is involved in the trans-cellular transport of neutral amino acids in epithelia and blood-tissue barriers.  相似文献   

13.
A human cDNA for amino acid transport system x(C)(-) was isolated from diethyl maleate-treated human glioma U87 cells. U87 cells expressed two variants of system x(C)(-) transporters hxCTa and hxCTb with altered C-terminus regions probably generated by the alternative splicing at 3'-ends. Both hxCTa and hxCTb messages were also detected in spinal cord, brain and pancreas, although the level of hxCTb expression appears to be lower than that of hxCTa in these tissues. When expressed in Xenopus oocytes, hxCTb required the heavy chain of 4F2 cell surface antigen (4F2hc) and exhibited the Na(+)-independent transport of L-cystine and L-glutamate, consistent with the properties of system x(C)(-). In agreement with this, 137 kDa band was detected by either anti-xCT or anti-4F2hc antibodies in the non-reducing condition in western blots, whereas it shifted to 50 kDa or 90 kDa bands in the reducing condition, indicating the association of two proteins via disulfide bands. We found that the expression of xCT was rapidly induced in U87 cells upon oxidative stress by diethyl maleate treatment, which was accompanied by the increase in the L-cystine uptake by U87 cells. Because of this highly regulated nature, xCT in glial cells would fulfill the task to protect neurons against oxidative stress by providing suitable amount of cystine to produce glutathione.  相似文献   

14.
Amino acid transport in mammalian plasma membranes is mediated by a multiplicity of amino acid transport systems. Some of them (systems L, y+L, xc- and bo,+) are the result of the activity of heteromeric amino acid transporters (HAT) (i.e. transport activity is elicited by the coexpression of a heavy and a light subunit). The two heavy subunits known today (HSHAT: rBAT and 4F2hc) were identified in 1992, and light subunits (LSHAT: LAT-1, LAT-2, asc-1, y+LAT-1, y+LAT-2, xCT and bo,+AT) have been cloned in the last 2 years. Defects in two genes of this family (SLC3A1, encoding rBAT and SLC7A9, encoding bo,+AT) are responsible for cystinuria, an inherited aminoaciduria of cystine and dibasic amino acids. This finding and functional studies of rBAT and bo,+AT suggested that these two proteins encompassed the high-affinity renal reabsorption system of cystine. In contrast to this view, immunofluorescence studies showed that rBAT is most abundant in the proximal straight tubule, and bo,+AT is most abundant in the proximal convoluted tubule of the nephron. The need for a newlight subunit for rBAT and a heavy subunit for bo,+AT is discussed.  相似文献   

15.
Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.  相似文献   

16.
We report here on the cloning and functional characterization of human LAT1, a subunit of the amino acid transport system L. The hLAT1 cDNA, obtained from a human placental cDNA library, codes for a protein of 507 amino acids. When functionally expressed in mammalian cells together with the heavy chain of the rat 4F2 antigen (r4F2hc), hLAT1 induces the transport of neutral amino acids. When expressed independently, neither hLAT1 nor r4F2hc was capable of amino acid transport to any significant extent. Thus, the hLAT1-r4F2hc heterodimeric complex is responsible for the observed amino acid transport. The transport process induced by the heterodimer is Na+ independent and is not influenced by pH. It recognizes exclusively neutral amino acids with high affinity. LAT1-specific mRNA is expressed in most human tissues with the notable exception of the intestine.  相似文献   

17.
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.  相似文献   

18.
The properties of system y(+)L-mediated transport were investigated on rat system y(+)L transporter, ry(+)LAT1, coexpressed with the heavy chain of cell surface antigen 4F2 in Xenopus oocytes. ry(+)LAT1-mediated transport of basic amino acids was Na(+)-independent, whereas that of neutral amino acids, although not completely, was dependent on Na(+), as is typical of system y(+)L-mediated transport. In the absence of Na(+), lowering of pH increased leucine transport, without affecting lysine transport. Therefore, it is proposed that H(+), besides Na(+) and Li(+), is capable of supporting neutral amino acid transport. Na(+) and H(+) augmented leucine transport by decreasing the apparent K(m) values, without affecting the V(max) values. We demonstrate that although ry(+)LAT1-mediated transport of [(14)C]l-leucine was accompanied by the cotransport of (22)Na(+), that of [(14)C]l-lysine was not. The Na(+) to leucine coupling ratio was determined to be 1:1 in the presence of high concentrations of Na(+). ry(+)LAT1-mediated leucine transport, but not lysine transport, induced intracellular acidification in Chinese hamster ovary cells coexpressing ry(+)LAT1 and 4F2 heavy chain in the absence of Na(+), but not in the presence of physiological concentrations of Na(+), indicating that cotransport of H(+) with leucine occurred in the absence of Na(+). Therefore, for the substrate recognition by ry(+)LAT1, the positive charge on basic amino acid side chains or that conferred by inorganic monovalent cations such as Na(+) and H(+), which are cotransported with neutral amino acids, is presumed to be required. We further demonstrate that ry(+)LAT1, due to its peculiar cation dependence, mediates a heteroexchange, wherein the influx of substrate amino acids is accompanied by the efflux of basic amino acids.  相似文献   

19.
Function and structure of heterodimeric amino acid transporters   总被引:19,自引:0,他引:19  
Heterodimeric amino acid transporters are comprised of twosubunits, a polytopic membrane protein (light chain) and an associated type II membrane protein (heavy chain). The heavy chain rbAT (related to b0,+ amino acid transporter) associates with the lightchain b0,+AT (b0,+ amino acid transporter) toform the amino acid transport system b0,+, whereas thehomologous heavy chain 4F2hc interacts with several light chains toform system L (with LAT1 and LAT2), system y+L (withy+LAT1 and y+LAT2), system x(with xAT), or system asc (with asc1). The association of light chainswith the two heavy chains is not unambiguous. rbAT may interact withLAT2 and y+LAT1 and vice versa; 4F2hc may interact withb0,+AT when overexpressed. 4F2hc is necessary fortrafficking of the light chain to the plasma membrane, whereas thelight chains are thought to determine the transport characteristics ofthe respective heterodimer. In contrast to 4F2hc, mutations in rbATsuggest that rbAT itself takes part in the transport besides servingfor the trafficking of the light chain to the cell surface. Heavy and light subunits are linked together by a disulfide bridge. The disulfidebridge, however, is not necessary for the trafficking of rbAT or 4F2heterodimers to the membrane or for the functioning of the transporter.However, there is experimental evidence that the disulfide bridge inthe 4F2hc/LAT1 heterodimer plays a role in the regulation of a cationchannel. These results highlight complex interactions between thedifferent subunits of heterodimeric amino acid transporters and suggestthat despite high grades of homology, the interactions between rbAT and4F2hc and their respective partners may be different.

  相似文献   

20.
We isolated two cDNAs from the mosquito Aedes aegypti, an L-amino acid transporter (AeaLAT) and a CD98 heavy chain (AeaCD98hc). Expression of AeaCD98hc or AeaLAT alone in Xenopus oocyte did not induce amino acid transport activity. However, co-expression of AeaCD98hc and AeaLAT, which are postulated to form a heterodimer protein linked through a disulfide bond, showed significant increase in amino acid transport activity. This heterodimeric protein showed uptake specificity for large neutral and basic amino acids. Small acidic neutral amino acids were poor substrates for this transporter. Neutral amino acid (leucine) uptake activity was partially Na+ dependent, because leucine uptake was approximately 44% lower in the absence of Na+ than in its presence. However, basic amino acid (lysine) uptake activity was completely Na+ independent at pH of 7.4. Extracellular amino acid concentration could be the main factor that determined amino acid transport. These results suggest the heteromeric protein is likely a uniporter mediating diffusion of amino acids in the absence of ions. The AeaLAT showed high level expression in the gastric caeca, Malpighian tubules and hindgut of larvae. In caeca and hindgut expression was in the apical cell membrane. However, in Malpighian tubules and in midgut, the latter showing low level expression, the transporter was detected in the basolateral membrane. This expression profile supports the conclusion that this AeaLAT is a nutrient amino acid transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号