首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引起的2019冠状病毒病(coronavirus disease 2019,COVID-19)暴发,给人类公共卫生安全和全球经济发展造成了严重威胁。疫苗和药物是防治疫情的重要手段,但目前研发的针对冠状病毒的疫苗和药物大多以SARS-CoV-2为靶点,该病毒若发生重大突变或出现新的高致病性冠状病毒,目前研发的有效疫苗或药物可能会无效,而且疫苗和新药的研发往往比较滞后,难以在疫情发生早期投入使用。因此,亟须研发高效、安全、广谱的冠状病毒疫苗和药物,以应对未来可能出现的冠状病毒疫情。本文对广谱冠状病毒疫苗和抗冠状病毒多肽的研究进展进行综述,期望为研发此类疫苗和药物提供参考。  相似文献   

2.
2019年底于中国武汉暴发的新型冠状病毒肺炎疫情来势凶猛,迅速蔓延全球,并被世界卫生组织列为“国际关注的突发公共卫生事件”,给全人类的健康及经济发展造成难以估量的损害。新型冠状病毒对人群普遍易感且传染性强,在无特效药物及治疗手段的情况下,疫苗接种是防控COVID-19疫情最有效且最经济的途径。目前全球疫苗研发正在加速进行,各国之间通力合作,共同应对此次疫情。主要对目前正在研发的针对SARS-CoV-2的灭活疫苗、病毒载体疫苗、基因工程重组亚单位疫苗、核酸疫苗的研究进展进行综述。  相似文献   

3.
At the end of December 2019, a novel coronavirus, 2019-nCoV, caused an outbreak of pneumonia spreading from Wuhan, Hubei province, to the whole country of China, which has posed great threats to public health and attracted enormous attention around the world. To date, there are no clinically approved vaccines or antiviral drugs available for these human coronavirus infections. Intensive research on the novel emerging human infectious coronaviruses is urgently needed to elucidate their route of transmission and pathogenic mechanisms, and to identify potential drug targets, which would promote the development of effective preventive and therapeutic countermeasures. Herein, we describe the epidemic and etiological characteristics of 2019-nCoV, discuss its essential biological features, including tropism and receptor usage, summarize approaches for disease prevention and treatment, and speculate on the transmission route of 2019-nCoV.  相似文献   

4.
Guo  Deyin 《中国病毒学》2020,35(3):253-255
正Emerging and re-emerging viral diseases are a public health concern for the whole world and pose a major threat to human health and life. In last decades, numerous major outbreaks of emerging and re-emerging viral diseases with gross public concern were recorded in different regions,including Ebola in western Africa, Zika in South America,  相似文献   

5.
In late December 2019 in Wuhan, China, several patients with viral pneumonia were identified as 2019 novel coronavirus (2019-nCoV). So far, there are no specific treatments for patients with coronavirus disease-19 (COVID-19), and the treatments available today are based on previous experience with similar viruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Influenza virus. In this article, we have tried to reach a therapeutic window of drugs available to patients with COVID-19. Cathepsin L is required for entry of the 2019-nCoV virus into the cell as target teicoplanin inhibits virus replication. Angiotensin-converting-enzyme 2 (ACE2) in soluble form as a recombinant protein can prevent the spread of coronavirus by restricting binding and entry. In patients with COVID-19, hydroxychloroquine decreases the inflammatory response and cytokine storm, but overdose causes toxicity and mortality. Neuraminidase inhibitors such as oseltamivir, peramivir, and zanamivir are invalid for 2019-nCoV and are not recommended for treatment but protease inhibitors such as lopinavir/ritonavir (LPV/r) inhibit the progression of MERS-CoV disease and can be useful for patients of COVID-19 and, in combination with Arbidol, has a direct antiviral effect on early replication of SARS-CoV. Ribavirin reduces hemoglobin concentrations in respiratory patients, and remdesivir improves respiratory symptoms. Use of ribavirin in combination with LPV/r in patients with SARS-CoV reduces acute respiratory distress syndrome and mortality, which has a significant protective effect with the addition of corticosteroids. Favipiravir increases clinical recovery and reduces respiratory problems and has a stronger antiviral effect than LPV/r. currently, appropriate treatment for patients with COVID-19 is an ACE2 inhibitor and a clinical problem reducing agent such as favipiravir in addition to hydroxychloroquine and corticosteroids.  相似文献   

6.
The global pandemic of COVID-19 caused by SARS-CoV-2 (also known as 2019-nCoV and HCoV-19) has posed serious threats to public health and economic stability worldwide, thus calling for development of vaccines against SARS-CoV-2 and other emerging and reemerging coronaviruses. Since SARS-CoV-2 and SARS-CoV have high similarity of their genomic sequences and share the same cellular receptor (ACE2), it is essential to learn the lessons and experiences from the development of SARS-CoV vaccines for the development of SARS-CoV-2 vaccines. In this review, we summarized the current knowledge on the advantages and disadvantages of the SARS-CoV vaccine candidates and prospected the strategies for the development of safe, effective and broad-spectrum coronavirus vaccines for prevention of infection by currently circulating SARS-CoV-2 and other emerging and reemerging coronaviruses that may cause future epidemics or pandemics.  相似文献   

7.
The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective.  相似文献   

8.
Novel 2019 coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and coronavirus disease 2019 (COVID-19), the respiratory syndrome it causes, have shaken the world to its core by infecting and claiming the lives of many people since originating in December 2019 in Wuhan, China. World Health Organization and several states have declared a pandemic situation and state of emergency, respectively. As there is no treatment for COVID-19, several research institutes and pharmaceutical companies are racing to find a cure. Advances in computational approaches have allowed the screening of massive antiviral compound libraries to identify those that may potentially work against SARS-CoV-2. Antiviral agents developed in the past to combat other viruses are being repurposed. At the same time, new vaccine candidates are being developed and tested in preclinical/clinical settings. This review provides a detailed overview of select repurposed drugs, their mechanism of action, associated toxicities, and major clinical trials involving these agents.  相似文献   

9.
2019年12月以来,武汉市暴发新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)疫情并迅速蔓延全国,2020年1月30日被世界卫生组织(World Health Organization,WHO)列为“国际关注的突发公共卫生事件”(public health emergency of international concern,PHEIC)。核酸序列分析证明COVID-19由新型冠状病毒(2019 novel coronavirus,2019-nCoV)引起。2019-nCoV为正链单链RNA病毒,基因组长约30 kb,两端为非编码区,中间为非结构蛋白编码区和结构蛋白编码区。非结构蛋白编码区主要包括开放读码框架(open reading frame,ORF)1a和ORF1b基因,编码16个非结构蛋白(non-structural proteins,NSP),即NSP1~16。结构蛋白编码区主要编码刺突(spike,S)蛋白、包膜(envelope,E)蛋白、膜(membrane,M)蛋白和核衣壳(nucleocapsid,N)蛋白。深入了解2019-nCoV基因组的结构和蛋白功能,将为2019-nCoV相关的病毒溯源、复制增殖、致病免疫、药物与疫苗研发以及当前疫情的防控提供有力的支撑。  相似文献   

10.
探讨严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)免疫球蛋白M(Immunoglobulin M,IgM)/免疫球蛋白G(Immunoglobulin G,IgG)、病毒核酸和白细胞介素6(interleukin 6, IL-6)的联合检测在2019冠状病毒病(coronavirus disease 2019, COVID-19)诊断和治疗中的临床价值。本研究按照《新型冠状病毒肺炎诊疗方案(试行第七版)》的标准收集了93例确诊病例(51例危重型、18例重型,15例轻型和9例普通型)和20例疑似病例(核酸检测阴性但临床症状和CT检测结果均符合标准)。选取110例儿科、妇科、肿瘤、血液和消化等疾病患者并排除COVID-19作为对照组。采用全自动化学发光免疫分析技术和电化学发光技术检测所有研究对象血清中SARS-CoV-2 IgM/IgG和IL-6。用实时荧光定量反转录聚合酶链反应对病例组和对照组的咽拭子进行SARS-CoV-2核酸检测。结果发现,血清IgM、IgG和IL-6在疑似病例中的阳性率分别为85%、75%和0%,在确诊病例中的阳性率分别为98.9%、95.7%和75.2%(其中危重型分别为100%、100%和100%,重型分别为94.4%、100%和97.9%,轻型分别为100%、93.3%和5%、普通型分别为100%、66.7%和0%)。IL-6和 SARS-CoV-2 IgM/IgG表达水平的改变与患者疾病的严重程度存在一定的关联性,差异有统计学意义(χ2=273.51,χ2=149.37;P<0.05)。血清IL-6和SARS-CoV-2 IgM/IgG的联合检测可作为诊断和治疗COVID-19的监测指标,也可作为SARS-CoV-2核酸检测假阴性的有效互补。  相似文献   

11.
The newly emerged coronavirus (severe acute respiratory syndrome coronavirus 2 SARS-CoV-2) and the disease that it causes coronavirus disease 2019 (COVID-19) have changed the world we know. Yet, the origin and evolution of SARS-CoV-2 remain mostly vague. Many virulence factors and immune mechanisms contribute to the deteriorating effects on the organism during SARS-CoV-2 infection. Both humoral and cellular immune responses are involved in the pathophysiology of the disease, where the principal and effective immune response towards viral infection is the cell-mediated immunity. The clinical picture of COVID-19, which includes immune memory and reinfection, remains unclear and unpredictable. However, many hopes are put in developing an effective vaccine against the virus, and different therapeutic options have been implemented to find effective, even though not specific, treatment to the disease. We can assume that the interaction between the SARS-CoV-2 virus and the individual's immune system determines the onset and development of the disease significantly.  相似文献   

12.
The unprecedented pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening global health. The virus emerged in late 2019 and can cause a severe disease associated with significant mortality. Several vaccine development and drug discovery campaigns are underway. The SARS-CoV-2 main protease is considered a promising drug target, as it is dissimilar to human proteases. Sequence and structure of the main protease are closely related to those from other betacoronaviruses, facilitating drug discovery attempts based on previous lead compounds. Covalently binding peptidomimetics and small molecules are investigated. Various compounds show antiviral activity in infected human cells.  相似文献   

13.
The outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) responsible for coronavirus disease 2019 (COVID-19) has developed into an unprecedented global pandemic. Clinical investigations in patients with COVID-19 has shown a strong upregulation of cytokine and interferon production in SARS-CoV2- induced pneumonia, with an associated cytokine storm syndrome. Thus, the identification of existing approved therapies with proven safety profiles to treat hyperinflammation is a critical unmet need in order to reduce COVI-19 associated mortality. To date, no specific therapeutic drugs or vaccines are available to treat COVID-19 patients. This review evaluates several options that have been proposed to control SARS-CoV2 hyperinflammation and cytokine storm, eincluding antiviral drugs, vaccines, small-molecules, monoclonal antibodies, oligonucleotides, peptides, and interferons (IFNs).  相似文献   

14.
Vaccines are proving to be highly effective in controlling hospitalization and deaths associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as shown by clinical trials and real-world evidence. However, a deadly second wave of coronavirus disease 2019 (COVID-19), infected by SARS-CoV-2 variants, especially the Delta (B.1.617.2) variant, with an increased number of post-vaccination breakthrough infections were reported in the world recently. Actually, Delta variant not only resulted in a severe surge of vaccine breakthrough infections which was accompanied with high viral load and transmissibility, but also challenged the development of effective vaccines. Therefore, the biological characteristics and epidemiological profile of Delta variant, the current status of Delta variant vaccine breakthrough infections and the mechanism of vaccine breakthrough infections were discussed in this article. In addition, the significant role of the Delta variant spike (S) protein in the mechanism of immune escape of SARS-CoV-2 was highlighted in this article. In particular, we further discussed key points on the future SARS-CoV-2 vaccine research and development, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.  相似文献   

15.
Coronavirus disease 2019 (COVID-19) is a pulmonary inflammatory disease induced by a newly recognized coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection was detected for the first time in the city of Wuhan in China and spread all over the world at the beginning of 2020. Several millions of people have been infected with SARS-CoV-2, and almost 382,867 human deaths worldwide have been reported so far. Notably, there has been no specific, clinically approved vaccine or anti-viral treatment strategy for COVID-19. Herein, we review COVID-19, the viral replication, and its effect on promoting pulmonary fibro-inflammation via immune cell-mediated cytokine storms in humans. Several clinical trials are currently ongoing for anti-viral drugs, vaccines, and neutralizing antibodies against COVID-19. Viral clearance is the result of effective innate and adaptive immune responses. The pivotal role of interleukin (IL)-15 in viral clearance involves maintaining the balance of induced inflammatory cytokines and the homeostatic responses of natural killer and CD8+ T cells. This review presents supporting evidence of the impact of IL-15 immunotherapy on COVID-19.  相似文献   

16.
Novel coronavirus disease 2019 (COVID-19) pandemic is the most recent health care crisis without specific prophylactic or therapeutic drugs. Antimalarial drug chloroquine (CHL) and its safer derivative hydroxychloroquine (HCHL) have been proposed to be repurposed to treat SARS coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19. CHL/HCHL have anti-inflammatory activity and are used to treat rheumatoid arthritis, osteoarthritis and lupus. Although, CHL/HCHL have an anti-viral activity against several viruses in cell-cultures, the anti-viral activity in-vivo is questionable. Repurposing of CHL/HCHL to treat SARS-CoV-2 infection is appealing. However, there is empirical evidence from animal studies with other viruses suggesting that CHL/HCHL may have an untoward paradoxical effect. One thus cannot exclude the possibility that CHL may increase the severity of the disease and prove deleterious both for the patients and public health efforts to contain the highly contagious and explosive spread of SARS-CoV-2.  相似文献   

17.
Dear Editor, The ongoing coronavirus disease 2019(COVID-19)global pandemic is caused by a novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which instigates severe and often fatal symptoms.As of September 4th,2020,more than 26 million cases of COVID-19 and almost 900,000 deaths have been reported to WHO.Based on Kissler and colleagues'modeled projections of future viral transmission scenarios,a resurgence in SARS-CoV-2 could occur over the next five years(Kissler et al.,2020).Research and clinical trials are underway to develop vacci-nes and treatments for COVID-19,but there are currently no specific vaccines or treatments for COVID-19(www.who.int),and therapeutic and prophylactic interventions are urgently needed to combat the outbreak of SARS-CoV-2.Of partic-ular importance is the identification of drugs which are effective,less-intrusive,most socioeconomic,and ready-to-use.  相似文献   

18.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Since its emergence, the COVID-19 pandemic has not only distressed medical services but also caused economic upheavals, marking urgent the need for effective therapeutics. The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. Given the well-studied properties of FDA-approved drugs, identification of SARS-CoV-2 3CLpro inhibitors in an FDA-approved drug library would be of great therapeutic value. Here, we screened a library consisting of 774 FDA-approved drugs for potent SARS-CoV-2 3CLpro inhibitors, using an intramolecularly quenched fluorescence (IQF) peptide substrate. Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride, raloxifene hydrochloride, tranylcypromine hydrochloride, and saquinavir mesylate have been found to block the proteolytic activity of SARS-CoV-2 3CLpro. The inhibitory activity of these repurposing drugs against SARS-CoV-2 3CLpro highlights their therapeutic potential for treating COVID-19 and other Betacoronavirus infections.  相似文献   

19.
2019新型冠状病毒基因组的生物信息学分析   总被引:1,自引:1,他引:0       下载免费PDF全文
2019年12月,中国武汉报道了冠状病毒引起的肺炎,其临床症状与2003年爆发的严重急性呼吸综合征(Severe Acute Respiratory Syndrome, SARS)不同,因此推断该病毒可能是冠状病毒的一个新变种。不同于简单使用全基因组序列的其它研究,我们于2018年在国际上首次提出分子功能与进化分析相结合的研究思想,并应用于Beta冠状病毒B亚群(BB冠状病毒)基因组的研究。在这一思想指导下,本研究使用BB冠状病毒基因组中的一个互补回文序列(命名为Nankai complemented palindrome)与其所在的编码区(命名为Nankai CDS)对新发布的2019新型冠状病毒基因组(GenBank:MN908947)进行分析以期准确溯源,并对BB冠状病毒的跨物种传播和宿主适应性进行初步研究。溯源分析的结果支持2019新型冠状病毒源自蝙蝠,但与SARS冠状病毒差异巨大,这一结果与两者临床症状差异一致。本研究的最重要发现是BB冠状病毒存在大量的可变翻译,从分子水平揭示了BB冠状病毒变异快、多样性高的特点。从BB冠状病毒可变翻译中获取的信息可应用于(但不限于)其快速检测、基因分型、疫苗开发以及药物设计。另外,我们推断BB冠状病毒可能通过可变翻译以适应不同宿主。基于大量基因组数据的实证分析,本研究在国际上首次从分子水平尝试解释了BB冠状病毒变异快、宿主多且具有较强的宿主适应性的原因。  相似文献   

20.
新型冠状病毒肺炎(2019 novel coronavirus disease, COVID-19),一种由动物来源的新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SRAS-CoV-2)感染所致的疾病在全球范围内急速传播,严重的危害人类的健康。快速、准确的诊断,安全有效的治疗方案及疫苗的研发对控制新冠病毒的传播具有重要的意义。为控制新冠病毒的传播,全世界的科学家和研究者投入了极大的精力去开发、研制快速准确的诊断试剂,治疗方案和疫苗,并取得了较大的进展。目前,基于各种检测平台的诊断试剂已在临床实验室应用,多种治疗方案已应用于临床治疗并取得不错的治疗效果。快速准确的样本采集和实验室检测是COVID-19临床治疗及有效控制病毒传染的两大重要支撑。虽然在多种类型的样本中均检测出了新冠病毒,但上呼吸道和下呼吸道样本尤其是鼻咽拭子依旧是目前检测最多的样本类型。随着疫情的发展,大量的基于核酸扩增的分子检测试剂和基于抗原或抗体的快速检测试剂已被研发并商业化获批。目前,实时荧光定量PCR检测依旧是新冠病毒检测最常用的和被认为是“金标准”的方法。虽然较多标签外用药药物和同情治疗方案取得了一定的临床疗效或改善,但目前针对新型冠状病毒肺炎尚无有效的治疗方案。目前在研究中针对新冠病毒的疫苗主要有:灭活或减毒病毒疫苗、基于蛋白质的疫苗、载体疫苗及DNA和RNA疫苗等。在全球,已有47个疫苗进入临床评估阶段,其中,10个疫苗处于临床Ⅲ期试验。本文简要介绍了目前新冠病毒肺炎的实验室诊断、治疗方案及疫苗研制所取得的进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号