首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood–brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self‐renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase‐like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down‐regulation of ROR1 suppressed the expression of epithelial‐mesenchymal transition‐related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Cancer recurrence is believed to be one of the major reasons for the failure of cancer treatment strategies. This biological phenomenon could arise from the incomplete eradication of tumour cells after chemo- and radiotherapy. Recent developments in the design of models reflecting cancer recurrence and in vivo imaging techniques have led researchers to gain a deeper and more detailed insight into the mechanisms underlying tumour relapse. Here, we provide an overview of three important drivers of recurrence including cancer stem cells (CSCs), neosis, and phoenix rising. The survival of cancer stem cells is well recognized as one of the primary causes of therapeutic resistance in malignant cells. CSCs have a relatively latent metabolism and show resistance to therapeutic agents through a variety of routes. Neosis has proven to be as an important mechanism behind tumour self-proliferation after treatment which gives rise to the expansion of tumour cells in the injured site via production of Raju cells. Phoenix rising is a pro-recurrence pathway through which apoptotic cancer cells send strong signals to the neighbouring diseased cells leading to their multiplication. The mechanisms involved in therapeutic resistance and tumour recurrence have not yet been fully understood and mostly remain unexplained. Without doubt, an improved understanding of the cellular machinery contributing to recurrence will pave the way for the development of novel, sophisticated and effective anti-tumour therapeutic strategies which can eradicate tumour without the threat of relapse.  相似文献   

3.
肿瘤干细胞(cancerstem cells,CSCs)是在肿瘤组织中具有干细胞特性的细胞亚群,它具有正常干细胞的多向分化潜能,能够无限增值和自主分化为各种具有异质性的肿瘤细胞。CSCs在肿瘤的发生、生长、转移中起着重要作用。同时,CSCs对目前大多数治疗如化疗、放疗不敏感,甚至具有耐药性,这也就导致了恶性肿瘤在治疗后容易复发。鉴于此,针对肿瘤干细胞的治疗日益受到关注,光动力疗法(photodynamictherapy,PDT)由于其微创性,不良反应少,靶向性强等特点在肿瘤的治疗研究中不断得到发展。本文将从CSCs的特性入手,结合PDT治疗的最新进展,探讨PDT治疗在肿瘤干细胞治疗中的应用。  相似文献   

4.
《Translational oncology》2021,14(11):101204
Lung adenocarcinoma patients with epidermal growth factor receptor (EGFR)-activating mutations respond well to tyrosine kinase inhibitors but typically develop resistance. Current therapies mainly target differentiated cells, not cancer stem cells (CSCs), but CSCs affect the occurrence, invasion, metastasis and treatment sensitivity of malignant tumours. Recently, aerobic exercise has emerged as adjuvant therapy for cancer. Aerobic exercise can accelerate blood circulation, improve tissue oxygen supply, reduce the stress level of patients, improve the antioxidant capacity of the body, and facilitate the degradation of hypoxia-inducible factor-1 (HIF-1) in tumour tissues, thus weakening its maintenance effect on CSCs. In this study, we successfully established lung adenocarcinoma cell lines with gefitinib resistance. Long-term gefitinib induction could increase the level of oxidative stress in lung adenocarcinoma cells and reduce the antioxidant capacity, resulting in the high expression of HIF-1 and ALDH1 and leading to the enrichment of CSCs, and a decreased response to gefitinib. This may be one of the important reasons for gefitinib-acquired resistance in lung adenocarcinoma. In the case of drug resistance, effective aerobic exercise could reduce ROS, activate SOD, inhibit HIF-1 and ALDH1, and cause a reduction in CSCs to sensitise cells to gefitinib again and ultimately inhibit the malignant proliferation of tumours. Therefore, in the treatment of lung adenocarcinoma, the inhibitory effect of aerobic exercise on oxidative stress can enhance the response of drug-resistant cells to gefitinib and can be used as an effective adjunct measure in the treatment of lung adenocarcinoma.  相似文献   

5.
Quiescence has been observed in stem cells (SCs), including adult SCs and cancer SCs (CSCs). Conventional chemotherapies mostly target proliferating cancer cells, while the quiescent state favors CSCs escape to chemotherapeutic drugs, leaving risks for tumor recurrence or metastasis. The tumor microenvironment (TME) provides various signals that maintain resident quiescent CSCs, protect them from immune surveillance, and facilitates their recurrence potential. Since the TME has the potential to support and initiate stem cell-like programs in cancer cells, targeting the TME components may prove to be a powerful modality for the treatment of chemotherapy resistance. In addition, an increasing number of studies have discovered that CSCs exhibit the potential of metabolic flexibility when metabolic substrates are limited, and display increased robustness in response to stress. Accompanied by chemotherapy that targets proliferative cancer cells, treatments that modulate CSC quiescence through the regulation of metabolic pathways also show promise. In this review, we focus on the roles of metabolic flexibility and the TME on CSCs quiescence and further discuss potential treatments of targeting CSCs and the TME to limit chemotherapy resistance.Subject terms: Cancer metabolism, Cancer microenvironment, Cancer stem cells  相似文献   

6.
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.  相似文献   

7.
Cancer stem cells (CSCs) are considered to be a kind of tumor cell population characterized by self-renewal, easy to metastasize and drug resistance, which play an indispensable role in the occurrence, development, metastasis and drug resistance of tumors, and their existence is an important reason for high metastasis and recurrence of tumors. Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length, have a close relationship with the malignant progression of cancer.In recent years, abundant studies have reavling that LncRNAs are beneficial to the regulation of various cancer stem cells. Linc-ROR, as a newly discovered intergenic non-protein-coding RNA in recent years, is considered to be a key regulator affecting the development of human tumors. Dysregulation of Linc-ROR is related to stemness phenotype and functional regulation of cancer stem cells. For that, Linc-ROR has the potential to be used as a diagnostic biomarker for cancer patients and can serve as a clinically meaningful potential therapeutic target. In this review, we generalize the existing research results on the important role of Linc-ROR in regulation of CSCs.  相似文献   

8.
Cancer is one of the leading causes of death worldwide, primarily due to the dearth of efficient therapies that result in long-lasting remission. This is especially true in cases of metastatic cancer where drug resistance causes the disease to recur after treatment. One of the factors contributing to drug resistance, metastasis, and aggressiveness of the cancer is cancer stem cells (CSCs) or tumor-initiating cells. As a result, CSCs have emerged as a potential target for drug development. In the present review, we have examined and highlighted the lncRNAs with their regulatory functions specific to CSCs. Moreover, we have discussed the difficulties and various methods involved in identifying lncRNAs that can play a particular role in regulating and maintaining CSCs. Interestingly, this review only focuses on those lncRNAs with strong functional evidence for CSC specificity and the mechanistic role that allows them to be CSC regulators and be the focus of CSC-specific drug development.  相似文献   

9.
Head and neck squamous cell cancer(HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells(CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.  相似文献   

10.
Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.  相似文献   

11.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

12.
According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.  相似文献   

13.
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell(CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryoniclike stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.  相似文献   

14.
Breast cancer, like many other cancers, is believed to be driven by a population of cells that display stem cell properties. Recent studies suggest that cancer stem cells (CSCs) are essential for tumor progression, and tumor relapse is thought to be caused by the presence of these cells. CSC-targeted therapies have also been proposed to overcome therapeutic resistance in breast cancer after the traditional therapies. Additionally, the metabolic properties of cancer cells differ markedly from those of normal cells. The efficacy of metabolic targeted therapy has been shown to enhance anti-cancer treatment or overcome therapeutic resistance of breast cancer cells. Metabolic targeting of breast CSCs (BCSCs) may be a very effective strategy for anti-cancer treatment of breast cancer cells. Thus, in this review, we focus on discussing the studies involving metabolism and targeted therapy in BCSCs.  相似文献   

15.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells(CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis intumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

16.
Recent studies on cancer stem cells (CSCs), a special subpopulation of tumor cells, promote our understanding of tumorigenesis, neovascularization, invasion, drug resistance and tumor recurrence, which establishes new concepts for cancer diagnosis and treatment. Therefore, the biological features and behaviors of CSCs have become an exciting frontier of cancer research. CSCs initiate tumor neovascularization and promote invasion with yet to be defined mechanisms. In this review, we provide evidence for the role of CSCs in tumor vascularization and discuss the potential mechanisms and therapeutic significance based on the interaction between CSCs and their vascular niches.  相似文献   

17.
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histonemodifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).  相似文献   

18.
Cancer stem cells (CSCs) are widely considered to be a small cell population in leukemia and many solid cancers with the properties including self-renewal and differentiation to non-tumorigenic cancer cells. Identification and isolation of CSCs significantly depend on the special surface markers of CSCs. Aberrant gene expression and signal transduction contribute to malignancies of CSCs, which result in cancer initiation, progression and recurrence. The inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. However, CSCs have not been detected in all cancers and hierarchical organization of tumors might challenge cancer stem cell models. Additionally, opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In this review, we discuss the debate of cancer stem cell model, the parameters by which CSCs can or cannot be defined, and the advances in the therapy of CSCs.  相似文献   

19.
Although early detection of breast cancer improved in recent years, prognosis of patients with late stage breast cancer remains poor, mostly due to development of multidrug resistance (MDR) followed by tumor recurrence. Cancer stem cells (CSCs), with higher drug efflux capability and other stem cell-like properties, are concentrated in a side population (SP) of cells, which were proposed to be responsible for MDR and tumor repopulation that cause patients to succumb to breast cancer. Therefore, targeting of CSCs as an adjuvant to chemotherapy should be able to provide a more effective treatment of this disease. Here, we used IMD-0354, an inhibitor of NF-κB, identified for targeting CSCs, in a combination therapy with doxorubicin encapsulated in targeted nanoparticles. IMD-0354 did target CSCs, evidenced by a decrease in the SP, demonstrated by the inhibition of the following: dye/drug efflux, reduction in ABC transporters as well as in colony formation in soft agar and low attachment plates. Decrease of stem-like gene expression of Oct4, Nanog and Sox2, and apoptosis resistance related to the Survivin gene also was observed after treatment with this compound. In addition, IMD-0354 targeted non-CSCs as indicated by reducing viability and increasing apoptosis. Targeted drug delivery, achieved with a legumain inhibitor, proved to enhance drug delivery under hypoxia, a hallmark of the tumor microenvironment, but not under normoxia. Together, this allowed a safe, non-toxic delivery of both anticancer agents to the tumor microenvironment of mice bearing syngeneic metastatic breast cancer. Targeting both bulk tumor cells with a chemotherapeutic agent and CSCs with IMD-0354 should be able to reduce MDR. This could eventually result in decreasing tumor recurrences and/or improve the outcome of metastatic disease.  相似文献   

20.
Dou J  Jiang C  Wang J  Zhang X  Zhao F  Hu W  He X  Li X  Zou D  Gu N 《Cell biology international》2011,35(3):227-234
CSCs (cancer stem cells) are a small subset of cells within a tumour that possesses the characteristics of stem cells and are considered to be responsible for resistance to chemoradiation. Identification of CSCs through stem cell characteristics might have relevant clinical implications. In this study, SP (side population ) cells were sorted from a human ovarian cancer cell line by FACS to determine whether cancer stem cell-like SP cells were present. A very small fraction of SP cells (2.6%) was detected in A2780 cells. SP cells possessed the following characteristics: highly proliferative activity, marked ability for self-renewal in soft agar and culture medium, high expression of ABCG2, drug resistance to vinblastine in vitro, and strong tumourigenic potential in Balb/c nude mice. It is concluded that there exists in the A2780 cell line a small number of SP cells with high expression of ABCG2. The cells have the characteristics of cancer stem-like cells, and identification and cloning of such human SP cells can help in improving therapeutic approaches to ovarian cancer in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号