首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vipera ammodytes is the most venomous European snake, whose venom has been used as antigen for immunization of antivenom-producing animals. Same as venom of any other snake, it is a complex mixture of proteins, peptides and other compounds which biochemical and pharmacological variability has been demonstrated at interspecies and intraspecies level. In this work we demonstrated intraspecific variability between 8 venom production batches using both the conventional and the new methodology. Moreover, in contrast to the literature on different venoms' variability, for the first time we were able to select those biochemical differences that are related to and give information on the venom's toxicity and immunogenicity. We have shown that methods quantifying ammodytoxin (the most toxic compound identified so far in the Vipera ammodytes ammodytes venom) content of the venom clearly distinguish between high and low immunogenic venoms.  相似文献   

2.
The amino acid sequence of ammodytoxin A, the most toxic presynaptically active phospholipase A2 isolated from Vipera ammodytes ammodytes venom, was determined. The primary structure was deduced from peptides obtained by Staphylococcus aureus proteinase and trypsin digestion of reduced and carboxymethylated protein and from the automated Edman degradation of the N-terminal part of the non-reduced molecule. According to the sequence, the enzyme classifies to the subgroup IIA of the phospholipase A2 family of enzymes. The location of basic residues believed to be responsible for the toxic activity of presynaptically active phospholipases differs substantially from those in the highly toxic enzymes of other subgroups. Comparison of the sequence with sequences of other snake venom enzymes indicates that the toxic site(s) may not be the same in all subgroups of presynaptically active phospholipases.  相似文献   

3.
Venoms are complex mixtures of proteins, peptides and other compounds whose biochemical and biological variability has been clearly demonstrated. These molecules have been used as antigens for immunization of anti-venom-producing animals (horses or sheep). Ammodytoxins (Atx) are potently neurotoxic compounds, and the most toxic compounds isolated so far from the Vipera ammodytes ammodytes (Vaa) venom. Recently we have shown that the level of antibodies specific to Vaa venom's most toxic component, ammodytoxin A (AtxA), (anti-AtxA IgG) in Vaa venom immunized rabbit sera highly correlated to the venom toxicity–neutralization potential of these sera. Here we investigated whether Atx content of Vaa venom could influence the outcome of immunization procedure. The novel ELISA was developed for precise determination of Atx content and Atx was quantified in venom samples used for immunization of rabbits. We clearly showed that animals immunized with the venom containing lower amount of Atx produced sera with significantly lower venom toxicity–neutralizing power and, vice versa, animals immunized with venoms containing higher amount of Atx produced sera with higher venom toxicity–neutralizing ability. Thus, the content of Atx in Vaa venom is a relevant parameter of its suitability in the production of highly protective Vaa anti-venom.  相似文献   

4.
The venom proteomics of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis, snakes of public health significance and the most poisonous reptiles in Europe, were analyzed by FPLC, 2-D electrophoresis, sequence analysis, and MS/MS. FPLC analysis showed the presence of l-amino acid oxidase, monomeric and heterodimeric phospholipases A2, C-type lectin protein, and proteinases in the venom of V. a. ammodytes. Representatives of the same protein families were found in the venom of the other subspecies, V. a. meridionalis. N-terminally identical PLA2 neurotoxins were identified in both venoms. Difference in the PLA2 compositions of the venoms was also observed: a monomeric protein with phospholipase A2 activity, identical in the first 20 amino acid residues to the catalitically inactive acidic component of the heterodimeric PLA2 present in both venoms, was found only in that of V. a. meridionalis. Probably, this protein represents an intermediate form of the two components of the heterodimer. 2-D electrophoresis and MS/MS analysis showed that the two venoms shared a number of protein families: monomeric and heterodimeric Group II PLA2s, serine proteinases, Group I, II, and III metalloproteinases, l-amino acid oxidases (LAAOs), cysteine-rich secretory proteins, disintegrins, and growth factors. Totally, 38 venom components of the V. a. ammodytes, belonging to 9 protein families, and 67 components of the V. a. meridionalis venom belonging to 8 protein families were identified. The venom proteome of V. a. ammodytes shows larger diversity of proteins (139) in comparison to that of V. a. meridionalis (104 proteins). Most of the proteins are homologues of known representatives of the respective protein families. The protein compositions explain clinical effects of the V. ammodytes snakebites, such as difficulties in the breathing, paralysis, apoptosis, cloting disorders, hemorrhage, and tissue necrosis. The lists of secreted proteins by the two vipers can be used for further study of structure-function relationships in the toxins and for prediction and treatment of snakebite consequences.  相似文献   

5.
The contribution of antibodies directed against the two main toxic groups of proteins in the Vipera ammodytes ammodytes venom, haemorrhagic metalloproteinases (H) and neurotoxic sPLA2s (Atxs), to the overall protective efficacy of the whole venom antisera was investigated. Using ELISA assays we established a high correlation between the protective efficacy of the whole venom antisera in mice and their anti-Atxs antibody content. As the haemorrhage is the prevailing toxic effect of the venom in human, the lack of correlation also with anti-H IgG content exposed that the mouse model might not be optimal to evaluate the neutralizing potential of the venom-specific antisera for human therapy. We further revealed that Atxs and structurally very similar but non-toxic AtnI2 from the venom are not immuno cross-reactive.  相似文献   

6.
Direct, dose dependent effects of the nose-horned vipers (Vipera ammodytes ammodytes) venom on various parameters of cardiac action in isolated rat hearts were examined. Biochemical (protein content, SDS polyacrylamide gel electrophoresis) and biological (minimum haemorrhagic and necrotizing dose and lethal dose (LD(50))) characterization of the venom was performed before testing. The hearts were infused with venom doses of 30, 90 and 150 microg/mL for 10 min followed by 30 min of wash out period. Left ventricular pressure, coronary flow, heart rate, atrioventricular conduction, myocardial oxygen consumption, incidence and duration of arrhythmias were measured and relative cardiac efficiency was calculated. Cardiac CPK, LDH, AST and troponin I were measured as biochemical markers of myocardial damage. The venom caused dose dependent electrophysiological instability and depression of contractility and coronary flow. Effects on the heart rate were biphasic; transient increase followed by significant slowing of the frequency. Relative cardiac efficiency decreased as oxygen consumption remained high relative to the heart rate-contractility product, indicating purposeless expenditure of oxygen and energy. Effects by the dose of 30 microg/mL were highly reversible while the dose of 90 mug/mL caused damages that were mostly irreversible. The dose of 150 mug/mL induced irreversible asystolic cardiac arrest.  相似文献   

7.
We are presenting the first primary structure of a snake venom inhibitor. It was isolated from the neurotoxin vipoxin of the Bulgarian Viper (Vipera ammodytes ammodytes, Serpentes) which represents a complex of a strong toxic basic protein with phospholipase A2 activity (2 isoenzymes) and the nontoxic acidic component functioning as its inhibitor. The sequence was established by automatic degradation in a liquid phase sequenator on the S-carboxymethylated chain and on the peptides obtained by tryptic hydrolysis of the oxidized chain. A limited tryptic digestion of the oxidized chain provided the necessary overlapping peptides. The inhibitor consists of 122 amino-acid residues including 14 cysteine and 10 tyrosine residues and is thus similar to the phospholipases from snake venoms. A comparison of the inhibitor sequence with the primary structure of the phospholipase A2 (CM-II) from the Horned Adder (Bitis nasicornis) venom shows a surprising homology of 52%. The identical amino acids include the cysteine and tyrosine residues and are generally accumulated in the surroundings of cysteine residues. The histidine (pos. 47) in the active center of the phospholipase A2 is substituted by glutamine in the inhibitor, but the tryptophan (pos. 30) which is essential for the enzymatic activity is present. The significant homology between enzyme and inhibitor in the vipoxin complex is believed to originate from a gene duplication. The relatively late development of the reptiles and the snake venom complex explains the highly preserved structure compared to other enzyme-inhibitor systems.  相似文献   

8.
Ammodytoxin A (AtxA) from the venom of Vipera ammodytes ammodytes belongs to group IIA secreted phospholipase A2 (sPLA2), for which the major pathologic activity is presynaptic neurotoxicity. We show here that this toxin also affects hemostasis because it exhibits strong anticoagulant activity. AtxA binds directly to human coagulation factor Xa (FXa) with Kdapp of 32 nM, thus inhibiting the activity of the prothrombinase complex with an IC50 of 20 nM. To map the FXa-interaction site on AtxA, various mutants of AtxA produced by site-directed mutagenesis and expressed in Escherichia coli were tested in the study. In surface plasmon resonance (SPR) measurements, with FXa covalently attached to the sensor chip, we show that the FXa-binding site on AtxA includes several basic amino acid residues at the C-terminal and beta-wing regions of the molecule. Applying an in vitro biological test for inhibition of prothrombinase activity, we further demonstrate that the same residues are also very important for the anticoagulant activity of AtxA. We conclude that the anticoagulant site of AtxA is located in the C-terminal and beta-wing regions of this phospholipase A2. Synthetic peptides comprising residues of the deduced anticoagulant site of AtxA provide a basis to synthesize novel anticoagulant drugs.  相似文献   

9.
从皖南尖吻蝮蛇(Agkistrodonacutus)毒液中经DEAE-Sepharose和SephacrylS-200两步凝胶柱层析首次纯化出一种中分子量出血毒素(简称AaHⅣ).经SDS-PAGE和等电聚焦凝胶电泳测定其分子量为44kD,等电点为pH5.0.从500mg粗毒中可获得20mgAaHⅣ纯品.AaHⅣ有较强的出血活性,最小出血剂量(MHD)为0.4μg.  相似文献   

10.
Ammodytoxins are neurotoxic secretory phospholipase A(2) molecules, some of the most toxic components of the long-nosed viper (Vipera ammodytes ammodytes) venom. Envenomation by this and by closely related vipers is quite frequent in southern parts of Europe and serotherapy is used in the most severe cases. Because of occasional complications, alternative medical treatment of envenomation is needed. In the present study, ammodytoxin inhibitor was purified from the serum of V. a. ammodytes using two affinity procedures and a gel exclusion chromatography step. The ammodytoxin inhibitor from V. a. ammodytes serum consists of 23- and 25-kDa glycoproteins that form an oligomer, probably a tetramer, of about 100 kDa. N-terminal sequencing and immunological analysis revealed that both types of subunit are very similar to gamma-type secretory phospholipase A(2) inhibitors. The ammodytoxin inhibitor from V. a. ammodytes serum is a potent inhibitor of phospholipase activity and hence probably also the neurotoxicity of ammodytoxins. Discovery of the novel natural inhibitor of these potent secretory phospholipase A(2) toxins opens up prospects for the development of new types of small peptide inhibitors for use in regulating the physiological and pathological activities of secretory phospholipases A(2).  相似文献   

11.
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.  相似文献   

12.
Some researches have been made to obtain more data about quantities of dried venom collected from Vipera ammodytes L., 1758 in captivity. The minimal quantity of dried venom collected by exemplar is 9.7 mg to 36.4 mg and the maximal quantity is 49.0 mg to 90.3 mg. From 810 exemplars of V. ammodytes of Bulgaria and 9 months of investigations, 10597 samples were made, with a total of 298.164 g of dried venom (average for animal: 28.14 mg).  相似文献   

13.
The amino-acid sequence of phospholipase A2 from the neurotoxin vipoxin of the Bulgarian Viper (Vipera ammodytes ammodytes, Serpentes) is presented. The enzyme consists of 122 amino-acid residues including 7 disulfide bonds and thus belongs to phospholipases A2 group IIA. The sequence was determined by automatic Edman degradation of the intact chain and of the peptides obtained after tryptic hydrolysis of the oxidized chain. The short cleavage time of 30 min and another limited tryptic digestion of the oxidized and citraconylated chain provided overlapping peptides. Sequencing was done with liquid- and gas-phase sequenators. The complete alignment of all peptides was facilitated by the high degree of homology with known viperid venom phospholipases A2. In common with mammalian phospholipases, the tryptophan residue in position 30 (essential for enzymatic activity) as well as the histidine in position 47 in the active site are present. Vipoxin phospholipase A2 shows 53.3% homology with another phospholipase A2 from Vipera ammodytes ammodytes venom (Ammodytoxin B), whereas 62% homology was found between both subunits of vipoxin phospholipase A2 and its inhibitor. This high degree of identity can be accounted for in terms of a common origin by gene duplication.  相似文献   

14.
15.
目的:对原矛头蝮(P.mucrosquamatus)的毒性及其恢复规律进行考察,增进对该蛇毒性的认识。方法:用该蛇连续攻击小鼠,用梯度剂量蛇毒对小鼠进行腹腔注射,统计死亡率,以折算绝对毒性和半数致死量。对毒性耗竭个体,在梯度时间间隔采集蛇毒,以考察毒性恢复规律。结果:原矛头蝮在2 h内可导致6只小鼠死亡。蛇毒对小鼠的半数致死量为12.204μL/Kg。毒性耗竭后,在间隔21天所获得蛇毒的容积达到最大值即190μL,湿重为149.7 mg。结论:毒蛇在攻击猎物时,并不一次性排完毒腺中的所有毒液,随着攻击次数的增多,毒腺中毒液量逐步减少直至耗竭。其毒液量的恢复需要约3周时间,期间,单次排毒量逐渐增加,干物质的含量也基本呈递增趋势。就单次最大排毒量而言,原矛头蝮高于竹叶青、蝮蛇和银环蛇。其单位剂量毒性高于五步蛇和竹叶青。  相似文献   

16.
Hung YC  Sava V  Hong MY  Huang GS 《Life sciences》2004,74(16):2037-2047
Antivenin activity of melanin extracted from black tea (MEBT) was reported for the first time. The antagonistic effect of MEBT was evaluated for Agkistrodon contortrix laticinctus (broadbanded copperhead), Agkistrodon halys blomhoffii (Japanese mamushi), and Crotalus atrox (western diamondback rattlesnake) snake venoms administered i.p. to ICR mice. MEBT was injected i.p. immediately after the venom administration in dose of 3 mg per mouse in the same place of venom injection. MEBT demonstrated neutralization effect against all venoms tested. The greatest antivenin effect of MEBT was found against Japanese mamushi snake venom. In this case, half the mice died within 2.5 +/- 0.7 h after injection of 0.9 mg/kg of venom. An immediate injection of MEBT substantially reduced the toxic effect of venom and extended time at the 50% level of survival up to 52.3 +/- 2.3 h. The antivenin activity of MEBT is due to chelating of Ca++ and non-specific binding of phospholipase A2. The inhibitory effect of MEBT on phospholipase A2 assessed for different venoms was similar to that obtained with pure enzyme. Low toxicity of MEBT in combination with its antagonistic activity against different venoms may allow effective life-saving treatment against snakebites. Such application of MEBT is important when identification of the snake is impossible or if specific treatment is unavailable.  相似文献   

17.
A kininogenin (EC 3.4.21.8) was purified from the venom of Vipera ammodytes ammodytes (European sand viper) by a combination of gel filtration and ion-exchange chromatography. The enzyme is approximately six times more active than bovine trypsin in its ability to release vasoactive peptides from a plasma precursor. The kininogenin is a glycoprotein containing 18-20% by weight of carbohydrate. It showed a mol. wt. of 40500 on gel filtration. Gel electrophoresis of the reduced sample in the presence of sodium dodecyl sulphate and 2-mercaptoethanol revealed the presence of two major components of mol.wt. 34300 and 31300. The heterogeneity, which was also observed on disc electrophoresis, was removed by incubation with neuraminidase. After incubation with neuraminidase the kininogenin retained full enzymic activity and possessed an isoelectric point of pH7.2. The carbohydrate content has been decreased to 10% by weight, and the single component seen on electrophoresis in the presence of sodium dodecyl sulphate and 2-mercaptoethanol corresponded to a mol.wt. of 29500.  相似文献   

18.
Snake venoms are an extremely rich source of pharmacologically active proteins with a considerable clinical and medical potential. To date, this potential has not been fully explored, mainly because of our incomplete knowledge of the venom proteome and the pharmacological properties of its components, in particular those devoid of enzymatic activity. This review summarizes the latest achievements in the determination of snake venom proteome, based primarily on the development of new strategies and techniques. Detailed knowledge of the venom toxin composition and biological properties of the protein constituents should provide the scaffold for the design of new more effective drugs for the treatment of the hemostatic system and heart disorders, inflammation, cancer and consequences of snake bites, as well as new tools for clinical diagnostic and assays of hemostatic parameters.  相似文献   

19.
More than one isoform of bothrojaracin (BJC), a potent and specific thrombin inhibitor isolated from Bothrops jararaca venom, has been found in individual venoms collected from adult snakes. Variations in snake venom composition have previously been associated with factors such as age, sex, geographic origin, season of the year and diet. In order to obtain further information concerning individual patterns of expression of BJC isoforms, we have analyzed five individual Bothrops jararaca snake venoms collected at the same time from adult female snakes from the same geographic region. As expected, crude venoms showed a similar migration pattern on SDS-PAGE. BJC was purified using a procedure which includes an affinity chromatography step (PPACK-thrombin Sepharose). A slight variation in the amount of BJC obtained from individual venom samples was noticed. Inhibition of thrombin-induced platelet aggregation as well as migration pattern on SDS-PAGE (under reducing and non-reducing conditions) and isoelectric focusing varied considerably among BJC samples from the five snakes. The amino-terminal sequences (residues 1–34) of individual BJC samples were compared with the sequence deduced from isolated cDNAs encoding α and β chains of BJC. A high degree of homology was detected, although some residues differed from one sample to other. Altogether, data confirmed the heterogeneity found for BJC purified from individual snakes. Thus, the results indicate that: (1) individual specimens of Bothrops jararaca have different patterns of BJC isoform expression; and (2) it seems that genetic factors, at least in part, determine the variability found in BJC production.  相似文献   

20.
Vipoxin from the venom of Vipera ammodytes meridionalis is an unique neurotoxic complex between a toxic phospholipase A2 and a highly homologous non-toxic protein inhibitor. It is an example of evolution of a catalytic and toxic function into inhibitory and non-toxic one. The activity of the V. ammodytes meridionalis toxin is 1.7 times higher than that of the closely related (92% sequence identity) neurotoxic complex RV4/RV7 from the venom of Vipera russelli formosensis The enhanced enzymatic activity of vipoxin is attributed to limited structural changes, in particular to the substitutions G54R and Q78K in the PLA2 subunit of the complex and to the T54R substitution in the inhibitor. Oleyloxyethylphosphocholine, aristolochic acid and vitamin E suppressed the enzymatic activity of vipoxin and its isolated PLA2 subunit. These compounds influence inflammatory processes in which PLA2 is implicated. The peptide Lys-Ala-Ile-Tyr-Ser, which is an integral part of the PLA2 components of the two neurotoxic complexes from V. ammodytes meridionalis and V. russelli formosensis (sequence 70-74) activated vipoxin increasing its PLA2 activity by 23%. This is in contrast to the inhibitory effect of the respective pentapeptides with 70-74 sequences on other group II PLA2s. Surprisingly, the same peptide inhibited 46% of the V. russelli formosensis PLA2 activity. The limited changes in the structure of the two highly homologous neurotoxins lead to considerable differences in their interaction with native peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号