首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

2.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

3.
An azalea little leaf (AzLL) disease characterised by abnormally small leaves, yellowing and witches'‐broom growth symptoms was observed in suburban Kunming, southwest China. Transmission electron microscopic observations of single‐membrane‐bound, ovoid to spherical bodies in phloem sieve elements of diseased plants and detection of phytoplasma‐characteristic 16S rRNA gene sequence in DNA samples from diseased plants provided evidence linking the disease to infection by a phytoplasma. Results from restriction fragment length polymorphism, phylogenetic and comparative structural analyses of multiple genetic loci containing 16S rRNA, rpsS, rplV, rpsC and secY genes indicated that the AzLL phytoplasma represented a distinct, new 16Sr subgroup lineage, designated as 16SrI‐T, in the aster yellows phytoplasma group. The genotyping also revealed that the AzLL phytoplasma represented new rp and secY gene lineages [rp(I)‐P and secY(I)‐O, respectively]. Phylogenetic analyses of secY and rp gene sequences allowed clearer distinctions between AzLL and closely related strains than did analysis of 16S rDNA.  相似文献   

4.
Mallotus japonicus with witches' broom disease were observed in Jeollabuk‐do, Korea. A phytoplasma from the infected leaves was identified, based on the 16S rDNA, 16S‐23S intergenic spacer region, and fragment of rp operon and tuf gene sequences. The 16S rDNA sequences exhibited maximum (99.7%) similarity with Iranian lettuce phytoplasma, the rp operon sequences exhibited 100% similarity with Goldenrain stunt phytoplasma, and the tuf gene sequences exhibited 99.8% similarity with Japanese spurge yellows phytoplasma. Results of the sequence analysis and phylogenetic studies confirmed that the phytoplasma associated with M. japonicus in Korea was an isolate of Aster Yellows group (subgroup16SrI‐B).  相似文献   

5.
Symptoms of unknown aetiology on Rhododendron hybridum cv. Cunningham's White were observed in the Czech Republic in 2010. The infected plant had malformed leaves, with irregular shaped edges, mosaic, leaf tip necrosis and multiple axillary shoots with smaller leaves. Transmission electron microscopy showed phytoplasma‐like bodies in phloem cells of the symptomatic plant. Phytoplasma presence was confirmed by polymerase chain reaction using phytoplasma‐specific, universal and group‐specific primer pairs. Restriction fragment length polymorphism analysis of 16S rDNA enabled classification of the detected phytoplasma into the aster yellows subgroup I‐C. Sequence analysis of the 16S‐23S ribosomal operon of the amplified phytoplasma genome from the infected rhododendron plant (1724 bp) confirmed the closest relationship with the Czech Echinacea purpurea phyllody phytoplasma. These data suggest Rhododendron hybridum is a new host for the aster yellows phytoplasma subgroup 16SrI‐C in the Czech Republic and worldwide.  相似文献   

6.
Prickly ash trees with shortened internodes, proliferation of shoots, phyllody and witches' brooms were observed for the first time in Korea. A phytoplasma was detected in infected trees by polymerase chain reaction amplification of 16S rDNA, 16S–23S intergenic spacer region and the fragment of rp operon sequences. The 16S rDNA sequences exhibited maximum (99.6%) similarity with Iranian lettuce phytoplasma, and the sequences of rp operon exhibited maximum (100%) similarity with golden rain phytoplasma. Based on the sequence analysis and phylogenetic studies, it was confirmed that phytoplasma infecting prickly ash trees in Korea belongs to the aster yellows group (subgroup 16SrI‐B).  相似文献   

7.
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees.  相似文献   

8.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

9.
Phytoplasma classification established using 16S ribosomal groups and ‘Candidatus Phytoplasma’ taxon are mainly based on the 16S rDNA properties and do not always provide molecular distinction of the closely related strains such as those in the aster yellows group (16SrI or ‘Candidatus Phytoplasma asteris'‐related strains). Moreover, because of the highly conserved nature of the 16S rRNA gene, and of the not uncommon presence of 16S rDNA interoperon sequence heterogeneity, more variable single copy genes, such as ribosomal protein (rp), secY and tuf, were shown to be suitable for differentiation of closely related phytoplasma strains. Specific amplification of fragments containing phytoplasma groEL allowed studying its variability in 27 ‘Candidatus Phytoplasma asteris'‐related strains belonging to different 16SrI subgroups, of which 11 strains were not studied before and 8 more were not studied on other genes than 16S rDNA. The restriction fragment length polymorphism (RFLP) analyses of the amplified fragments confirmed differentiation among 16SrI‐A, I‐B, I‐C, I‐F and I‐P subgroups, and showed further differentiation in strains assigned to 16SrI‐A, 16SrI‐B and 16SrI‐C subgroups. However, analyses of groEL gene failed to discriminate strains in subgroups 16SrI‐L and 16SrI‐M (described on the basis of 16S rDNA interoperon sequence heterogeneity) from strains in subgroup 16SrI‐B. On the contrary, the 16SrI unclassified strain ca2006/5 from carrot (showing interoperon sequence heterogeneity) was differentiable on both rp and groEL genes from the strains in subgroup 16SrI‐B. These results indicate that interoperon sequence heterogeneity of strains AY2192, PRIVA (16SrI‐L), AVUT (16SrI‐M) and ca2006/5 resulted in multigenic changes – one evolutionary step further – only in the latter case. Phylogenetic analyses carried out on groEL are in agreement with 16Sr, rp and secY based phylogenies, and confirmed the differentiation obtained by RFLP analyses on groEL amplicons.  相似文献   

10.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

11.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

12.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

13.
Japanese raisin (Hovenia dulcis) trees with typical phytoplasma‐like symptoms were observed for the first time in South Korea. The disease, named Japanese raisin witches’ broom, is progressively destructive. The cause of the graft‐transmissible disease was confirmed by electron microscopy and molecular studies. The 16S rDNA sequence analysis showed that the phytoplasma was closely related to the elm yellows (EY) group, ribosomal subgroup 16SrV‐B. The 16S‐23S rDNA intergenic spacer region, fragment of rp operon and secY gene sequences had 96–99% similarity with members of EY phytoplasma. Based on the sequence analyses and phylogenetic studies, it was confirmed that the phytoplasma infecting Japanese raisin trees in Korea belongs to the EY group.  相似文献   

14.
Aster yellows phytoplasma was detected for the first time in goldenrain tree (Koelreuteria paniculata) growing in Sinpyeong‐myeon, Jeollabuk‐do, South Korea. DNA was extracted from the infected leaf samples and part of the 16S rDNA, rp operon and tuf gene were amplified using R16F2n/R2 and gene‐specific primers. The sequence analysis showed that the phytoplasma was closely related (99%) to members of the Aster Yellows (AY) group, and belonging to 16Sr I, subgroup B. Moreover, the 16S rDNA sequences of the isolate showed 88–96% identity with members of other 16Sr and undesignated groups. Based on the sequence identity and phylogenetic studies, it was confirmed that phytoplasma infecting goldenrain tree in South Korea belongs to the AY group.  相似文献   

15.
Royal Palms (Roystonea regia) with symptoms such as severe chlorosis, stunting, collapse of older fronds and general decline were observed in the state of Selangor, Malaysia. Using polymerase chain reaction (PCR) amplification with phytoplasma universal primer pair P1/P7 followed by R16F2N/R16R2 and fU5/rU3 as nested PCR primer pairs, all symptomatic plants tested positively for phytoplasma. Results of phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with Royal Palm yellow decline (RYD) was an isolate of ‘Candidatus Phytoplasma asteris’ belonging to a new 16SrI‐subgroup. These results show that Roystonea regia is a new host for the aster yellows phytoplasma (16SrI). This is the first report on the presence of 16SrI phytoplasma on Royal Palm trees in Malaysia.  相似文献   

16.
During January 2010, severe stunting symptoms were observed in clonally propagated oil palm (Elaeis guineensis Jacq.) in West Godavari district, Andhra Pradesh, India. Leaf samples of symptomatic oil palms were collected, and the presence of phytoplasma was confirmed by nested polymerase chain reaction (PCR) using universal phytoplasma‐specific primer pairs P1/P7 followed by R16F2n/R16R2 for amplification of the 16S rRNA gene and semi‐nested PCR using universal phytoplasma‐specific primer pairs SecAfor1/SecArev3 followed by SecAfor2/SecArev3 for amplification of a part of the secA gene. Sequencing and BLAST analysis of the ~1.25 kb and ~480 bp of 16S rDNA and secA gene fragments indicated that the phytoplasma associated with oil palm stunting (OPS) disease was identical to 16SrI aster yellows group phytoplasma. Further characterization of the phytoplasma by in silico restriction enzyme digestion of 16S rDNA and virtual gel plotting of sequenced 16S rDNA of ~1.25 kb using iPhyClassifier online tool indicated that OPS phytoplasma is a member of 16SrI‐B subgroup and is a ‘Candidatus Phytoplasma asteris’‐related strain. Phylogenetic analysis of 16S rDNA and secA of OPS phytoplasma also grouped it with 16SrI‐B. This is the first report of association of phytoplasma of the 16SrI‐B subgroup phytoplasma with oil palm in the world.  相似文献   

17.
Primula acaulis (L.) Hill. plants showing stunting, leaf‐yellowing and virescence were first discovered in the Czech Republic. Polymerase chain reactions with subsequent restriction fragment length polymorphism analyses and sequencing enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐B, tufI‐B, rpI‐B, groELIB‐III and SecY‐IB subgroups. Phylogeny of the 16S rRNA gene sequences as well as sequence analysis of several chromosomal regions, such as the 16S‐23S ribosomal operon, ribosomal proteins, spc ribosomal protein operon, genes for elongation factor EF‐Tu, molecular chaperonin large subunit GroEL, immunodominant membrane protein, ribosome recycling factor, urydilate kinase, ATP‐ and Zn2+‐dependent proteases not only confirmed its affiliation with the ‘Candidatus Phytoplasma asteris’ species but also enabled its detailed molecular characterization. The less researched regions of phytoplasma genome (amp, adk, hflB, pyrHfrr genes) could be valuable as additional markers for phytoplasma through differentiation especially within the 16SrI‐B ribosomal subgroup.  相似文献   

18.
A new cauliflower disease characterised by the formation of leaf‐like inflorescences and malformed flowers occurred in a seed production field located in Yunnan, a southwest province of China. Detection of phytoplasma‐characteristic 16S rRNA gene sequences in DNA samples from diseased plants linked the cauliflower disease to phytoplasmal infection. Results from phylogenetic and virtual restriction fragment length polymorphism analyses of the 16S rRNA gene sequence indicated that the cauliflower‐infecting agent is a ‘Candidatus Phytoplasma aurantifolia’‐related strain and is a new member of the peanut witches'‐broom phytoplasma group, subgroup A (16SrII‐A). Multilocus genotyping showed close genetic relationship between this cauliflower phytoplasma and a broad host range phytoplasma lineage found only in East Asia thus far. Molecular markers present in the secY and rp loci distinguished this phytoplasma from other members of the subgroup 16SrII‐A.  相似文献   

19.
In Alberta, Canada, valerian grown for medicinal purposes and sowthistle, a common weed, showed typical aster yellows symptoms. Molecular diagnosis was made using a universal primer pair (P1 / P7) designed to amplify the entire 16S rRNA gene and the 16 / 23S intergenic spacer region in a direct polymerase chain reaction (PCR) assay. This primer pair amplified the DNA samples from valerian and sowthistle and reference controls (AY‐27, CP, PWB, AY of canola, LWB). They produced the expected PCR products of 1.8 kb, which were diluted and used as templates in a nested PCR. Two primer pairs R16F2n / R2 and P3 / P7 amplified the DNA templates giving PCR products of 1.2 and 0.32 kb, respectively. No PCR product was obtained with either set of primers and DNA isolated from healthy plants. Restriction fragment length polymorphism (RFLP) was used to analyse the partial 16S rDNA sequences (1.2 kb) of all phytoplasma DNA samples after restriction with four endonucleases (AluI, HhaI, MseI and RsaI). The restriction patterns of these strains were found to be identical with the RFLP pattern of the AY phytoplasma reference control (AY‐27 strain). Based on the RFLP data, the two strains are members of subgroup A of the AY 16Sr1 group. We report here the first molecular study on the association of AY phytoplasmas with valerian and sowthistle plants.  相似文献   

20.
Aster yellows phytoplasma were detected, for the first time, in peach trees in Al‐Jubiha and Homret Al‐Sahen area. Leaves of infected trees showed yellow or reddish, irregular water‐soaked blotches. Discoloured areas become dry and brittle and the dead tissues dropped out. Under severe infections, leaves fall down and fruits dropped prematurely. Phytoplasmas were detected from all symptomatic peach trees by polymerase chain reaction (PCR) using universal phytoplasmas primers P1/P7 followed by R16F2/R2. No amplification products were obtained from templates of asymptomatic peaches. PCR products (1.2 kb) used for restriction fragment length polymorphism analysis (RFLP) after digestion with endonuclease AluI, HpaII, KpnI and RsaI produced the same restriction profiles for all samples, and they were identical with those of American aster yellows (16SrI) phytoplasma strain. This paper is the first report on aster yellows phytoplasma affecting peach trees in Jordan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号