首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new cauliflower disease characterised by the formation of leaf‐like inflorescences and malformed flowers occurred in a seed production field located in Yunnan, a southwest province of China. Detection of phytoplasma‐characteristic 16S rRNA gene sequences in DNA samples from diseased plants linked the cauliflower disease to phytoplasmal infection. Results from phylogenetic and virtual restriction fragment length polymorphism analyses of the 16S rRNA gene sequence indicated that the cauliflower‐infecting agent is a ‘Candidatus Phytoplasma aurantifolia’‐related strain and is a new member of the peanut witches'‐broom phytoplasma group, subgroup A (16SrII‐A). Multilocus genotyping showed close genetic relationship between this cauliflower phytoplasma and a broad host range phytoplasma lineage found only in East Asia thus far. Molecular markers present in the secY and rp loci distinguished this phytoplasma from other members of the subgroup 16SrII‐A.  相似文献   

2.
In previous work, Coorg black pepper yellows phytoplasma (CBPYp), a ‘Candidatus Phytoplasma asteris'‐related strain, was identified in association with black pepper plants exhibiting yellows symptoms in southern India. In the present study, multiple gene (16S rRNA, tuf, rplV‐rpsC, secY and secA) sequence analyses were carried out for finer characterisation of CBPYp isolates identified in seven plants. Nucleotide sequences of each gene studied were identical among all the CBPYp isolates here analysed. Comparison of virtual restriction fragment length polymorphism (RFLP) patterns, validated by actual digestion of polymerase chain reaction (PCR) products, revealed that CBPYp is a member of subgroups 16SrI‐B, rpI‐L, tufI‐B, secYI‐L and secA1‐A. Interestingly, alignments of nucleotide sequences with other ‘Candidatus Phytoplasma asteris'‐related strains revealed the presence of CBPYp‐specific single nucleotide polymorphisms (SNPs), located in restriction sites for endonucleases not used for conventional classification. CBPYp‐specific SNPs in genes 16S rRNA, tuf and secA were detectable by virtual and actual RFLP assays, while SNPs present in rplV‐rpsC and secY genes were not located in any restriction recognition site. CBPYp‐specific SNPs can be used as molecular markers for the specific identification of CBPYp and for future research focused on investigating epidemiology and ecology of CBPYp in India.  相似文献   

3.
Japanese raisin (Hovenia dulcis) trees with typical phytoplasma‐like symptoms were observed for the first time in South Korea. The disease, named Japanese raisin witches’ broom, is progressively destructive. The cause of the graft‐transmissible disease was confirmed by electron microscopy and molecular studies. The 16S rDNA sequence analysis showed that the phytoplasma was closely related to the elm yellows (EY) group, ribosomal subgroup 16SrV‐B. The 16S‐23S rDNA intergenic spacer region, fragment of rp operon and secY gene sequences had 96–99% similarity with members of EY phytoplasma. Based on the sequence analyses and phylogenetic studies, it was confirmed that the phytoplasma infecting Japanese raisin trees in Korea belongs to the EY group.  相似文献   

4.
Symptoms resembling phytoplasma disease were observed on Verbena × hybrida in Alanya, Turkey, during October 2013. Infected plants were growing as perennials in a flower border and showed symptoms of discoloured flowers, poor flower clusters, inflorescences with a small number of developed flowers and thickened fruit stalks. Electron microscopy examination of the ultra‐thin sections revealed polymorphic bodies in the phloem tissue of leaf midribs. The phytoplasma aetiology of this disease was confirmed by polymerase chain reaction of the 16S rRNA gene, the 16–23S rRNA intergenic spacer region and the start of the 23S rRNA gene using universal phytoplasma‐specific primer pair P1A/P7A, two ribosomal protein (rp) genes (rpl22 and rps3) (the group‐specific primer pair rp(I)F1A/rp(I)R1A) and the Tuf gene (group‐specific fTufAy/rTufAy primers) generating amplicons of 1.8 kbp, 1.2 kbp and 940 bp, respectively. Comparison of the amplified sequences with those available in GenBank allowed classification of the phytoplasma into aster yellows subgroups 16SrI‐B, rpI‐B and tufI‐B. This is the first report about molecular detection and identification of natural infection of the genus Verbena by phytoplasma and occurrence of the aster yellows group phytoplasma on an ornamental plant in Turkey.  相似文献   

5.
We investigated multiple inflorescence disease of Cirsium arvense (CMI) and its association with phytoplasmas of the 16SrIII‐B subgroup, potential natural vector(s) and reservoir plant(s). From five locations in northern Serbia, 27 plants of C. arvense, 1 C. vulgare and 3 Carduus acanthoides with symptoms of multiple inflorescences (MIs) were collected and tested for 16SrIII group phytoplasmas. All symptomatic plants were found to be infected. Tentative reservoir plants and insect vectors were collected at a Dobanovci site where the continuous presence of CMI disease was recorded. Among the 19 most abundant plant species submitted to phytoplasma testing, all symptomless, the presence of the 16SrIII group was detected only in two legumes: Lathyrus tuberosus (2/5) and L. aphaca (1/5). Among 19 insect species from six families of Auchenorrhyncha, the deltocephalid leafhopper Euscelis incisus was the only insect carrying a 16SrIII phytoplasma (10% of analysed individuals). Transmission trials were performed with naturally infected E. incisus adults of the summer generation and with a laboratory population reared on red clover. After an acquisition period of 48 h on C. arvense symptomatic for MIs and a latent period of 28 days, 83% of the E. incisus adults (300/360) were infected with CMI phytoplasma. In two transmission tests, the leafhoppers successfully transmitted the phytoplasma to exposed plants (C. arvense and periwinkle), proving its role as a natural vector. Test plants of C. arvense infected with the 16SrIII‐B phytoplasma expressed typical symptoms similar to those observed in the field, such as MIs or the absence of flowering, shortened internodes and plant desiccation. Typical symptoms in infected periwinkles were virescence and phyllody. The molecular characterisation of the CMI phytoplasma isolates from diseased and asymptomatic field‐collected plants, vectors, and test plants was performed by sequence analyses of the 16S rRNA, rpl22rps3 and rpl15‐secY genes. Phylogenetic analyses of other members of the 16SrIII group of phytoplasmas indicated closest relatedness with clover yellow edge phytoplasma (CYE) of the 16SrIII‐B subgroup.  相似文献   

6.
Phytoplasmas were detected in Sophora japonica cv. golden and Robinia pseudoacacia with diseased branches of witches'‐broom collected in Haidian district, Beijing, China. Phytoplasma cells were observed in phloem sieve elements of symptomatic S. japonica cv. golden by transmission electron microscopy. The presence of phytoplasmas was further confirmed by sequence determination of partial gene sequences of 16S rDNA, rp (ribosomal protein) and secY. Phylogenetic trees and virtual restriction fragment length polymorphism (RFLP) analyses indicated that the phytoplasmas causing S. japonica cv. golden witches'‐broom (SJGWB) and R. pseudoacacia witches'‐broom (RPWB) belong to the 16SrV (elm yellows) group, and they are most closely related to subgroup 16SrV‐B, rpV‐C and secYV‐C jujube witches'‐broom (JWB) phytoplasma. Comparative analyses indicated that the phytoplasma of RPWB was closer to the JWB and that R. pseudoacacia might serve as an alternative host plant of JWB phytoplasma.  相似文献   

7.
During field surveys in 2015, a phytoplasma‐associated disease was identified in Narcissus tazetta plants in Behbahan, Iran. The characteristic symptoms were phyllody and virescence. The presence of phytoplasma in symptomatic plants was confirmed using PCR amplification and sequencing of 16S rRNA, tuf, secY and vmp1 genes. Based on the blastn results, the sequences of 16S rRNA, tuf, secY and vmp1 genes shared, respectively, 99%, 100%, 99% and 99% sequence identity with phytoplasma strains in 16SrXII‐A subgroup. RFLP and phylogenetic analyses using the sequences of 16S rRNA, tuf and secY genes confirmed the assortment of studied strains to 16SrXII‐A phytoplasma subgroup. Sequence comparison of these four genes revealed that all the sequences of 28 strains studied were identical. To the best of our knowledge, the association of “Candidatus Phytoplasma solani” with N. tazetta was demonstrated for the first time in the world.  相似文献   

8.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

9.
Primula acaulis (L.) Hill. plants showing stunting, leaf‐yellowing and virescence were first discovered in the Czech Republic. Polymerase chain reactions with subsequent restriction fragment length polymorphism analyses and sequencing enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐B, tufI‐B, rpI‐B, groELIB‐III and SecY‐IB subgroups. Phylogeny of the 16S rRNA gene sequences as well as sequence analysis of several chromosomal regions, such as the 16S‐23S ribosomal operon, ribosomal proteins, spc ribosomal protein operon, genes for elongation factor EF‐Tu, molecular chaperonin large subunit GroEL, immunodominant membrane protein, ribosome recycling factor, urydilate kinase, ATP‐ and Zn2+‐dependent proteases not only confirmed its affiliation with the ‘Candidatus Phytoplasma asteris’ species but also enabled its detailed molecular characterization. The less researched regions of phytoplasma genome (amp, adk, hflB, pyrHfrr genes) could be valuable as additional markers for phytoplasma through differentiation especially within the 16SrI‐B ribosomal subgroup.  相似文献   

10.
A new yellows disease of watercress (Nasturtium officinale) in Hawaii has symptoms of reduced leaf size, leaf yellowing and crinkling, and occasionally witches’ brooms. This disease is found on all watercress farms on Oahu but has not yet been found on other Hawaiian islands. Watercress plants were tested for phytoplasma infection by polymerase chain reaction assays using phytoplasma‐specific primers. Amplicons of the expected sizes were produced from all symptomatic plants but not from healthy plants raised from seed. Phylogenetic analysis of the 16S rRNA gene indicated that watercress yellows was caused by a phytoplasma in the aster yellows group, with sequence similarity to onion yellows from Japan. Six weed species collected from the vicinity of affected watercress farms, Amaranth sp., Eclipta prostrata, Emilia sonchifolia, Plantago major, Myriophyllum aquaticum and Sonchus oleraceus, were also determined to be hosts of this phytoplasma. Leafhoppers, identified as Macrosteles sp. (Hemiptera, Cicadellidae), collected from symptomatic watercress transmitted this phytoplasma to watercress, plantain and lettuce (Lactuca sativa) in greenhouse experiments.  相似文献   

11.
In 2005, rose plants (Rosa rugosa cv. ‘Plena’) exhibiting typical phytoplasma disease symptoms of stunting, yellowing, witches’‐broom and dieback were observed in Pingyin, Shandong Province, China. The disease, rose witches’‐broom (RoWB), is progressively destructive and can be graft‐transmitted. Polymerase chain reaction (PCR), sequencing of PCR products and electron microscopy were used to investigate the possible association of phytoplasma with RoWB. All results indicated that presence of phytoplasma in the symptomatic rose plants. Sequence alignment of 16S rRNA gene, tuf gene and rp gene confirmed that the phytoplasma associated with RoWB is the causal agent of Paulownia witches’‐broom disease, which might be transmitted from the paulownia tree that is several meters away. To our knowledge, this is the first report of the molecular characterization of phytoplasma infecting rose in China.  相似文献   

12.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

13.
Mallotus japonicus with witches' broom disease were observed in Jeollabuk‐do, Korea. A phytoplasma from the infected leaves was identified, based on the 16S rDNA, 16S‐23S intergenic spacer region, and fragment of rp operon and tuf gene sequences. The 16S rDNA sequences exhibited maximum (99.7%) similarity with Iranian lettuce phytoplasma, the rp operon sequences exhibited 100% similarity with Goldenrain stunt phytoplasma, and the tuf gene sequences exhibited 99.8% similarity with Japanese spurge yellows phytoplasma. Results of the sequence analysis and phylogenetic studies confirmed that the phytoplasma associated with M. japonicus in Korea was an isolate of Aster Yellows group (subgroup16SrI‐B).  相似文献   

14.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

15.
The direct correlation between teratological cases and phytoplasma infections was ascertained in spontaneous and cultivated plant species. Plants, belonging to 31 species and 12 families, showing symptoms of growth abnormalities were collected and analysed. Attempted detection of Rhodococcus fascians by isolation, PCR indexing and 16S rRNA sequencing from fasciated tissues allowed to exclude its presence. Nested PCR by universal primers and 16S rRNA sequence analyses indicated the presence of phytoplasmas, belonging to six groups, in the 44% of symptomatic samples. Among the infected species, Austrocylindropuntia exaltata, Opuntia subulata, Euphorbia characias, Euphorbia dendroides, Euphorbia linifolia, Euphorbia myrsinites, Rumex buchephalophorus, Linaria multicaulis and Fedia cornucopiae represent new phytoplasma hosts world-wide. Moreover this is the first report of phytoplasma belonging to subgroup 16SrRNA II-I in Italy. These findings together with the known erratic distribution in plant tissues of these phloem-restricted prokaryotes indicate a close correlation between fasciation and similar growth disorders and phytoplasma infections.  相似文献   

16.
Surveys for phytoplasmas and viruses were conducted during September 2014 and 2015 on highbush blueberry farms in the Région Montérégie, Quebec. Total DNA and RNA were extracted from blueberry bushes showing blueberry stunt (BBS) symptoms and from symptomless blueberry bushes, and utilised as templates for PCR and RT‐PCR assays, respectively. Phytoplasma DNA was amplified with universal phytoplasma primers that target the 16S rRNA, secA and secY genes from 12 out of 40 (30%) plants tested. Based on 16S rRNA, secA and secY gene sequence identity, phylogenetic clustering, actual and in silico RFLP analyses, phytoplasma strains associated with BBS disease in Quebec were identified as ‘Candidatus Phytoplasma asteris’‐related strains, closely related to the BBS Michigan phytoplasma strain (16SrI‐E). The secY gene sequence‐based single nucleotide polymorphism analysis revealed that one of the BBS phytoplasma strains associated with a leaf marginal yellowing is a secY‐I RFLP variant of the subgroup 16SrI‐E. Two viruses were detected in blueberry bushes. The Blueberry Red Ringspot Virus (BRRV) was found in a single infection in the cultivar Bluecrop with no apparent typical BRRV symptoms. The Tobacco Ringspot Virus (TRSV) was found singly infecting blueberry plants and co‐infecting a BBS phytoplasma‐infected blueberry cv. Bluecrop plant. This is the first report of TRSV in the cv. Bluecrop in Quebec. The Quebec BBS phytoplasma strain was identified in the leafhopper Graphocephala fennahi, which suggests that G. fennahi may be a potential vector for the BBS phytoplasma. The BBS disease shows a complex aetiology and epidemiology; therefore, prompt actions must be developed to support focused BBS integrated management strategies.  相似文献   

17.
Amaranth (Amaranthus retroflexus L.) is a common weed that grows vigorously in orchards, roadside verges, fields, woods and scrubland in China. In 2009, phytoplasma disease surveys were made in orchards in Beijing, China, and stem/leaf tissues were collected from asymptomatic amaranths. Direct PCR using universal phytoplasma primers P1/P7 detected 16S rRNA gene sequences in every DNA sample extracted from the symptomless amaranths. Sequence alignment and phylogenetic analyses of the 16S rRNA gene determined that the amaranth phytoplasma strain was related to ‘Candidatus Phytoplasma ziziphi’. Furthermore, virtual RFLP pattern analysis showed that the amaranth phytoplasma belonged to the 16SrV‐B subgroup. This is the first report of symptomless plants containing a ‘Candidatus Phytoplasma ziziphi’‐related strain.  相似文献   

18.
Severe growth abnormalities, including leaf yellowing, sprout proliferation and flower virescence and phyllody, were found on Brassica rapa subsp. pekinensis plants in Poland. The presence of phytoplasma in naturally infected plants was demonstrated by polymerase chain reaction assay employing phytoplasma universal P1/P7 followed by R16F2n/R16R2 primer pairs. The detected phytoplasma was identified using restriction fragment length polymorphism analysis (RFLP) of the 16S rRNA gene fragment with AluI, HhaI, MseI and RsaI endonucleases. After enzymatic digestion, all tested samples showed restriction pattern similar to that of ‘Candidatus phytoplasma asteris’. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Sequences of the 16S rDNA gene fragment of analysed phytoplasma isolates were nearly identical. They revealed high nucleotide sequence identity (>98%) with corresponding sequences of other phytoplasma isolates from subgroup 16SrI‐B, and they were classified as members of ‘Candidatus phytoplasma asteris’. This is the first report of the natural occurrence of phytoplasma‐associated disease in plants of Chinese cabbage.  相似文献   

19.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

20.
White clover plants showing little leaf and leaf reddening symptoms were observed in Isfahan Province in central Iran. Restriction fragment length polymorphism analyses of nested PCR‐amplified fragments from Iranian clover little leaf phytoplasma isolates and representative phytoplasmas from other phytoplasma groups using AluI, CfoI, KpnI and RsaI restriction enzymes indicated that the clover phytoplasma isolates are related to the peanut WB group. Sequence analyses of partial 16S rRNA fragments showed that Iranian clover little leaf phytoplasma has 99% similarity with soybean witches'‐broom phytoplasma, a member of the peanut WB (16SrII) phytoplasma group. This is the first report of clover infection with a phytoplasma related to the 16SrII group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号