首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
The physiological mechanism underlying the cost of reproduction may consist of immunodepression caused by increased parental effort. Here, we report effects of experimental manipulation of clutch size on T-lymphocyte cell-mediated immune response in female pied flycatchers, Ficedula hypoleuca. Parents with reduced broods provisioned at lower rates than those caring for control and enlarged broods three days after hatching. Parents caring for enlarged broods provisioned nests at higher rates 13 days after chick hatching than those feeding control and reduced broods. Females with enlarged broods weighed less than females with control or reduced broods. No effect of experimental treatment on nestling mass and size was found. The response to the injection of phytohaemagglutinin in the wing-web of females decreased with increasing brood size and with increasing provisioning rate when the chicks were three days old, when controlling for the negative effect of female mass on response. The T-lymphocyte cell-mediated response decreased from the reduced to the control, and from this to the enlarged group, when controlling for female mass. This effect of experimental manipulation of clutch size was significant and consistent with a trade-off between maternal effort and immunocompetence.  相似文献   

2.
Parasitoid sex ratios can be greatly influenced by mating and dispersal behaviour. Many sex ratio models assume that mating is strictly local (only mated females disperse from the natal patch) and that a single male is sufficient to inseminate all females in a brood. Bethylids (aculeate parasitoids) have been used to test predictions of these models, but less attention has been paid to testing their underlying assumptions. We investigated the timing of eclosion, mating and dispersal in mixed-sex and single-sex broods of the bethylid wasp Goniozus nephantidis. In mixed-sex broods, almost all females mate before dispersal and a single male is sufficient to inseminate virtually all females, even when brood sizes are large. Males disperse from both mixed-sex and all-male broods, but males in all-male broods disperse more slowly. Virgin females disperse from all-female broods, which are common. Virgin females can produce a brood, mate with their own sons and subsequently produce mixed-sex broods, but their success rate is very low. Virgin females could potentially circumvent sex allocation constraints by superparasitizing mixed-sex broods, but when presented with hosts bearing mixed-sex broods they destroy all members of the initial brood before ovipositing. Because of the high prevalence of single-sex broods and dispersal of both sexes, the mating structure of G. nephantidis is unlikely to conform to the assumption of strict local mating.  相似文献   

3.
When the reproductive value of sons and daughters differ, parents are expected to adjust the sex ratio of their offspring to produce more of the sex that provides greater fitness returns. The body condition of females or environmental factors, such as food abundance and mate quality, may influence these expected fitness returns. In a previous study of tree swallows (Tachycineta bicolor), we found that females produced more sons in their broods when they were in better body condition (mass corrected for size). We tested this relationship by experimentally clipping some flight feathers to reduce female body condition. As predicted, we found that females with clipped feathers had a lower proportion of sons in their broods and poorer body condition. However, female body condition alone was not a significant predictor of brood sex ratio in our experiment. We suggest that brood sex ratio is causally related to some other factor that covaries with body condition, most likely the foraging ability of females. The hypothesis that brood sex ratios are influenced by individual differences in female foraging ability is supported by a high repeatability of brood sex ratio for individual females. Thus, maternal effects may have a strong influence on the sex ratios of offspring.  相似文献   

4.
Abstract. 1. Females of the multivoltine carpenter bee Xylocopa sulcutipes (Maa) (Hymenoptera: Anthophoridae) usually excavate a straight tunnel in dead twigs and mass provision a linear array of up to ten brood cells with pollen and nectar. An egg is deposited upon each food mass within one cell.
2. Female offspring generally receive a higher provisioning mass (0.180 ± 0.048 g) than males, a significant difference ( P > 0.001). There are, however, male larvae that receive as much food or more as their sisters or female larvae reared in another nest.
3. There is a close positive association between the size of a mother and the weight of provisions for individual daughters, but not for sons.
4. Female offspring are positioned in the innermost brood cells (Gositions 1, 2 and 3). The sex ratio of the outer cells is either significantly male biased (positions 4–6) or skewed towards males (positions 8 and 9). Positions 7 and 10 are in equilibrium.
5. Solitary females produce a significantly female biased sex ratio ( P < 0.01). Sex ratio in social nests is skewed toward females, but not significantly so ( P < 0.2). There is no significant difference between the sex ratio of solitary and social nests ( P = 0.361). The population sex ratio (pooled sex ratio of all broods produced) is significantly female biased ( P = 0.003).
6. Females kept in the laboratory produced female biased sex ratios whilst unmated females produced all-male broods indicating that insemination and ovarian development are not causally related.
7. The expected sex ratio (ESR) under equal investment, calculated as 1/CR (CR = mean male provision weight/mean female provision weight), is 137.5:117.5 (males:females), and differs significantly from that observed, 104:151 (males:females) ( P < 0.001). The 'Local Resource Enhlancement' hypothesis best explains the female biased sex ratio found in X.sulcatipes and its maintenance in the population.  相似文献   

5.
Sex allocation in black-capped chickadees Poecile atricapilla   总被引:2,自引:0,他引:2  
Optimal sex allocation for individuals can be predicted from a number of different hypotheses. Fisherian models of sex allocation predict equal investment in males and females up to the end of parental care and predict brood compositions based on the relative costs of producing males and females. The Trivers-Willard hypothesis predicts that individual females should alter the sex ratio of their broods based on their own condition if it has a differential impact on the lifetime reproductive success of their sons and daughters. The Charnov model of sex allocation predicts that females should alter sex allocation based on paternal attributes that may differentially benefit sons versus daughters. Because females are the heterogametic sex in birds, many recent studies have focussed on primary sex ratio biases. In black-capped chickadees Poecile atricapilla , males are larger than females suggesting they may be more costly to raise than females. Female condition affects competitive ability in contests for mates, and thus may be related to variance in fecundity. Females prefer high-ranking males as both social and extrapair partners. These observations suggest that females might vary the sex ratio of their broods based on the predictions of any of the above models. Here, we report on the results of PCR based sex determination of 1093 nestlings in 175 broods sampled from 1992 to 2001. Population-wide, we found a mean brood sex ratio of 0.525±0.016, with no significant deviation from a predicted binomial distribution. We found no effect of clutch size, female condition, hatch date, parental rank or paternity. Our results reject the idea that female black-capped chickadees systematically vary sex allocation in their broods.  相似文献   

6.
Male red-winged blackbirds (Agelaius phoeniceus) provisioned50%(118/235) of available broods over an 8-year period. In mostcases, each male provisioned only the oldest brood on his territory,but in 21 cases, the male fed a younger brood after first feedingan older one. In 10 of these cases the switch to the youngerbrood followed predation of the older brood, but in the remaining11 cases the cause of the switch was unknown. To determine whethermale red-winged blackbirds adjust their provisioning when thedemands of their broods change, we exchanged broods betweenpairs of nests on 10 territories. Before each exchange, eachmale had been feeding nestlings of only one of the two broods.In response to the exchanges, male (and female) red-winged blackbirdsimmediately adjusted their rates of provisioning to the increasedor decreased demands of the broods. In addition, most malesswitched their provisioning within a day after the exchangeso that they fed the same broods as before the exchanges. Ourresults show that male red-winged blackbirds adjust their provisioningwhen the demands of their broods change and suggest that maleshave enough information about other nesting attempts on theirterritories to shift to a more profitable brood when the expectedbenefits of provisioning change. Male red-winged blackbirdsdo not appear to follow an investment strategy based on priorinvestments (i.e., they do not commit the "Concorde fallacy").  相似文献   

7.
Parents are expected to invest more in young that provide the greatest fitness returns. The cues that parents use to allocate resources between their offspring have received much recent attention. In birds, parents may use begging intensity, position in the nest or nestling size as cues to provision the most competitive young or those most likely to survive. It may also benefit parents to invest in young differentially by sex or relatedness if the fitness returns of sons and daughters differ or broods are sired by multiple males. We examined the allocation of food to tree swallow, Tachycineta bicolor, nestlings in relation to their begging behaviour, size, sex and paternity. Provisioning by parents was not related to nestling size, sex or paternity. The begging behaviour of nestlings did not differ with respect to sex or paternity. Both parents were more likely to feed nestlings that begged first or were closer to the nest entrance, suggesting that parents allocate food resources in response to cues that nestlings control. As a consequence, brood reduction was facilitated by biased provisioning within the brood in addition to the nestling size hierarchies created by hatching asynchrony. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

8.
Organisms are expected to adjust the sex ratio of their offspring in relation to the relative fitness benefits of sons and daughters. We used a molecular sexing technique that amplifies an intron of the CHD1 gene in birds to examine the sex ratio at egg-laying in socially monogamous tree swallows (Tachycineta bicolor). We examined all individuals in 40 broods (210 young), including all unhatched eggs and nestlings. Thus, the sex ratio we measured was the same as the sex ratio at laying. Overall, the mean sex ratio per brood (+/- SD) was biased significantly towards males (57 +/- 2% male). Within broods, male-biased sex ratios were associated with females in better body condition, and these females were more likely to produce sons in better condition. Tree swallows have one of the highest known levels of extra-pair paternity in birds (38-76% extra-pair young), and, as a consequence, variance in male reproductive success is greater than that of females. Thus, in tree swallows, investment in sons has the potential for higher fitness returns than investment in daughters, assuming that sons in better condition have greater reproductive success.  相似文献   

9.
The amount of food delivered by parents to their chicks is affected by various life history traits as well as environmental and social factors, and this investment ultimately determines the current and future fitness of parents and their offspring. We studied parental provisioning behaviour in the Vinous-throated Parrotbill Paradoxornis webbianus, a species with an unusual social system that is characterised by flock-living, weak territoriality and variable nesting dispersion. Parental provisioning rate had a positive influence on chick mass gain, suggesting that provisioning rate is an effective measure of parental investment in this species. Males and females fed nestlings at approximately the same rate, and no other carers were observed at nests. Parents coordinated provisioning rates so that they mostly fed chicks synchronously. However, the extent to which parents coordinated provisioning was associated with their social environment, synchrony being positively related to local breeding density and negatively to nearest neighbour distance. The rate at which parents provisioned nestlings showed the same relationships with social measures, being greatest at higher density and when neighbours were closer. Visit rate was also related to chick age, but not to brood size, brood sex ratio, extra pair paternity, laying date, temperature, parents’ body characters, time of day or year. We conclude that a breeding pairs’ social environment plays an important role in determining parental investment, probably through its effects on the opportunities that parents have for foraging with conspecifics.  相似文献   

10.
The attractiveness hypothesis predicts that females produce broods with male-biased sex ratios when they mate with attractive males. This hypothesis presumes that sons in broods with male-biased sex ratios sired by attractive males have high reproductive success, whereas the reproductive success of daughters is relatively constant, regardless of the attractiveness of their sires. However, there is little direct evidence for this assumption. We have examined the relationships between offspring sex ratios and (1) sexual ornamentation of sons and (2) body size of daughters in broods from wild female guppies Poecilia reticulata. Wild pregnant females were collected and allowed to give birth in the laboratory. Body size and sexual ornamentation of offspring were measured at maturity. Our analysis revealed a significant positive correlation between offspring sex ratios (the proportion of sons per brood) and the total length as well as the area of orange spots of sons, two attributes that influence female mating preferences in guppies. The sex ratio was not associated with the body size of daughters. These results suggest that by performing adaptive sex allocation according to the expected reproductive success of sons and daughters, female guppies can enhance the overall fitness of their offspring.  相似文献   

11.
Provisioning in western bluebirds is not related to offspring sex   总被引:1,自引:1,他引:0  
Parents should invest more in one sex of offspring if the fitnessreturn per unit investment is higher for that sex. Sex-biasedprovisioning may occur when sons and daughters differ in theirneeds or when there is local resource competition or enhancement.We used feeding observations and sex-ratio manipulations todetermine if sex-biased provisioning occurs in western bluebirds(Sialia mexicana). The sex ratio of the brood had no effecton feeding rates by adults at unmanipulated nests over a 6-yearperiod. Adult males and females also did not differ in the numberof feedings made to sons and daughters in 13 videotaped nests.Likewise, adult feeding rates to nests experimentally biasedtoward sons or daughters did not differ significantly. Nesdingsthat were closest to the nest hole and that reached highestwere the most likely to be fed. Sons and daughters did not differin the begging behaviors most likely to result in a feeding.We conclude that sex-biased provisioning does not occur in thispopulation of western bluebirds and diat nesding behavior maybe a more important determinant of feeding.  相似文献   

12.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

13.
Sex allocation theory predicts that females should produce more sons when the reproductive success of sons is expected to be high, whereas they should produce more daughters, not daughters when the reproductive success of sons is expected to be low. The guppy (Poecilia reticulata) is a live‐bearing fish, and female guppies are known to produce broods with biased sex ratios. In this study, we examined the relationship between brood sex ratio and reproductive success of sons and daughters, to determine whether female guppies benefit from producing broods with biased sex ratios. We found that sons in male‐biased broods had greater mating success at maturity than sons in female‐biased broods when brood sizes were larger. On the other hand, the reproductive output of daughters was not significantly affected by brood sizes and sex ratios. Our results suggest that female guppies benefit from producing large, male‐biased brood when the reproductive success of sons is expected to be high.  相似文献   

14.
The sex of 746 great reed warbler fledglings (from 175 broods) was determined by the use of single primer polymerase chain reaction. The reliability of the technique was confirmed as 104 of the fledglings were subsequently recorded as adults of known sex. The overall sex ratio did not differ from unity. Variation in sex ratios between broods was larger than expected from a binomial distribution. Female identity explained some of the variation of brood sex ratio indicating that certain females consistently produced sex ratios that departed from the average value in the population. The theory of sex allocation predicts that parents should adjust the sex ratio of their brood to the relative value of sons and daughters and this may vary in relation to the quality of the parents or to the time of breeding. In the great reed warbler, the proportion of sons was not related to time of breeding, or to any of five female variables. Of five male variables, males with early arrival date tended to produce more daughters. The sex ratio of fledglings that were a result of extra-pair fertilizations did not differ from that of legitimate fledglings. Hence, there is currently no evidence of that female great reed warblers invest in a higher proportion of sons when mated with attractive males.  相似文献   

15.
The parents of sexually size-dimorphic offspring are often assumed to invest more resources producing individuals of the larger sex. A range of different methods have been employed to estimate relative expenditure on the sexes, including quantifying sex-specific offspring growth, food intake, energy expenditure and energy intake, in addition to measures of parental food provisioning and energy expenditure. These methods all have the potential to provide useful estimates of relative investment, but each has particular problems of interpretation, and few studies have compared the estimates derived concurrently from more than two of these measures. In this study we compared these surrogate measures of parental investment in the brown songlark Cinclorhamphus cruralis, which exhibits one of the most extreme cases of sexual size dimorphism among birds. At 10 days of age we found that male chicks, on average, were 49% heavier, received 42% more prey items, expended 44% more energy and ingested 50% more metabolizable energy than their sisters. Furthermore, we created, experimentally, both all-male and all-female broods of 10-day-old chicks and found that mothers delivered 43% more prey items and expended 27% more energy when provisioning all-male broods, providing the first direct evidence for a change in parental energy expenditure in relation to brood sex ratio. These data reveal remarkable agreement between these estimates of investment and suggest that all may provide quantitatively useful information on sex allocation. However, the lower variance associated with estimates of relative mass and energy intake suggest that these methods may be of greater utility, although this may primarily reflect the shorter period over which our provisioning data were collected.  相似文献   

16.
Wild G  West SA 《The American naturalist》2007,170(5):E112-E128
Tests of sex allocation theory in vertebrates are usually based on verbal arguments. However, the operation of multiple selective forces can complicate verbal arguments, possibly making them misleading. We construct an inclusive fitness model for the evolution of condition-dependent brood sex ratio adjustment in response to two leading explanations for sex ratio evolution in vertebrates: the effect of maternal quality on the fitness of male and female offspring (the Trivers-Willard hypothesis [TWH]) and local resource competition (LRC) between females. We show (1) the population sex ratio can be either unbiased or biased in either direction (toward either males or females); (2) brood sex ratio adjustment can be biased in either direction, with high-quality females biasing reproductive investment toward production of sons (as predicted by the TWH) or production of daughters (opposite to predictions of the TWH); and (3) selection can favor gradual sex ratio adjustment, with both sons and daughters being produced by both high- and low-quality mothers. Despite these complications, clear a priori predictions can be made for how the population sex ratio and the conditional sex ratio adjustment of broods should vary across populations or species, and within populations, across individuals of different quality.  相似文献   

17.
We analyzed individual variation in work load (nest visit rate) during chick‐rearing, and the consequences of this variation in terms of breeding productivity, in a highly synchronous breeder, the European starling (Sturnus vulgaris) focusing on female birds. There was marked (10‐ to 16‐fold) variation in total, female and male nest visit rates, among individuals, but individual variation in female nest visit rate was independent of environment (rainfall, temperature) and metrics of individual quality (laying date, clutch size, amount of male provisioning help), and was only weakly associated with chick demand (i.e., day 6 brood size). Female nest visit rate was independent of date and experimentally delayed birds provisioned at the same rate as peak‐nesting birds; supporting a lack of effect of date per se. Brood size at fledging was positively but weakly related to total nest visit rate (male + female), with >fivefold variation in nest visit rate for any given brood size, and in females brood size at fledging and chick mass at fledging were independent of female nest visit rate, that is, individual variation in workload was not associated with higher productivity. Nevertheless, nest visit rate in females was repeatable among consecutive days (6–8 posthatching), and between peak (first) and second broods, but not among years. Our data suggest that individual females behave as if committed to a certain level of parental care at the outset of their annual breeding attempt, but this varies among years, that is, behavior is not fixed throughout an individual's life but represents an annually variable decision. We suggest females are making predictable decisions about their workload during provisioning that maximizes their overall fitness based on an integration of information on their current environment (although these cues currently remain unidentified).  相似文献   

18.
Sexual conflict is magnified during the post-fledging period of birds when the sexes face different trade-offs between continuing parental care or investing in self maintenance or other mating opportunities. Species with reversed sex roles provide a unique opportunity to study the relationship between mating systems and investment in parental care. Here, we provide the first detailed study of the length of care by males versus females (n = 24 pairs) during the post-fledging period, assessing factors that may promote care within and between the sexes. In the northern flicker Colaptes auratus, a species with partly reversed sex roles, males cared longer than females (average 16 versus 12 days, respectively). Overall, 36 % of females but no males deserted the brood prior to fledgling independence. Parents that provisioned nestlings at a high rate also spent more days feeding fledglings. Among males, age and nestling feeding rates were positively associated with the length of care. Among females, a low level of feather corticosterone (CORTf) was associated with a longer length of care. About 45 % of fledglings died within the first week, but fledglings with intermediate body mass had the highest survival suggesting stabilizing selection on mass. Fledgling survival was also higher in individuals with larger broods and lower levels of CORTf. We demonstrate that because females can be polyandrous they often desert the brood before males, and that the sexes respond to different cues relating to their energy balance when deciding the length of care given to their offspring.  相似文献   

19.
Sex allocation theory proposes that parents should bias thesex ratio of their offspring if the reproductive value of onesex is greater than that of the other. In the monogamous bluetit (Parus caeruleus), males have a greater variance in reproductivesuccess than females, and high-quality males have higher reproductivesuccess than high-quality females due to extrapair paternity.Consequently, females mating with attractive males are expectedto produce broods biased toward sons, as sons benefit more thandaughters from inheriting their father's characteristics. Songand plumage color in birds are secondary sexual characters indicatingmale quality and involved in female choice. We used these malesexual traits in blue tits to investigate adaptive sex ratiomanipulation by females. We did not find any relationship betweenmale color ornamentation and brood sex ratio, contrary to previousstudies. On the other hand, the length of the strophe bout (i.e.,the mean number of strophes per strophe bout) of fathers waspositively related with the proportion of sons in their broods.The length of the strophe bout is supposed to reflect male qualityin terms of neuromuscular performance. We further showed thatsons produced in experimentally enlarged broods had shorterstrophe bouts than sons raised in reduced broods. These resultsare consistent with the hypothesis that females adjust the sexratio of their broods in response to the phenotype of theirmate.  相似文献   

20.
Bias in sex ratios at hatching and sex specific post hatching mortality in size dimorphic species has been frequently detected, and is usually skewed towards the production and survival of the smaller sex. Since common terns Sterna hirundo show a limited sexual size dimorphism, with males being only about 1–6% larger than females in a few measurements, we would expect to find small or no differences in production and survival of sons and daughters. To test this prediction, we carried out a 2-year observational study on sex ratio variation in common terns at hatching and on sex specific post hatching mortality. Sons and daughters hatched from eggs of similar volume. Post hatching mortality was heavily influenced by hatching sequence. In addition, we detected a sex specific mortality bias towards sons. Overall, hatching sex ratio and sex specific mortality resulted in fledging sex ratios 8% biased towards females. Thus, other reasons than body size may be influencing the costs of rearing sons. Son mortality was not homogeneous between brood sizes, but greater for two-chick broods. Since adults rearing two-chick broods were younger, lighter and bred consistently later than those rearing three-chick broods, it is suggested that lower capacity of two-chick brood parents adversely affected offspring survival of sons. Though not significantly, two-chick broods tended to be female biased at hatching, perhaps to counteract the greater male-biased nestling mortality. Thus, population bias in secondary sex ratio is not limited to strongly size dimorphic species, but species with a slight sexual size dimorphism can also show sex ratio bias through a combination of differential production and mortality of sons and daughters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号