首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Information on localization of Al in tea leaf tissues is required in order to better understand Al tolerance mechanism in this Al-accumulating plant species. Here, we have used low-energy X-ray fluorescence spectro-microscopy (LEXRF) to study localization of Al and other low Z-elements, namely C, O, Mg, Si and P, in fully developed leaves of the tea plant [Camellia sinensis (L.) O. Kuntze]. Plants were grown from seeds for 3?months in a hydroponic solution, and then exposed to 200?μM AlCl3 for 2?weeks. Epidermal-mesophyll and xylem phloem regions of 20?μm thick cryo-fixed freeze-dried tea-leaf cross-sections were raster scanned with 1.7 and 2.2?keV excitation energies to reach the Al–K and P–K absorption edges. Al was mainly localized in the cell walls of the leaf epidermal cells, while almost no Al signal was obtained from the leaf symplast. The results suggest that the retention of Al in epidermal leaf apoplast represent the main tolerance mechanism to Al in tea plants. In addition LEXRF proved to be a powerful tool for localization of Al in plant tissues, which can help in our understanding of the processes of Al uptake, transport and tolerance in plants.  相似文献   

2.
Redistribution of Potassium, Calcium, Magnesium, and Manganese in the Plant   总被引:2,自引:0,他引:2  
The extent of redistribution in apple was described by calculating the fruit/leaf ratio of the cation content. It was found that the redistribution diminishes in the sequence K > Mg > Ca ~ Mn. These results are more or less in agreement with those found elsewhere. Investigations were made to see whether it was possible to account for the differences in redistribution by the phloem by means of the solubility of these cations in the sieve tube sap. As model plants Yucca flaccida and Ricinus communis were used, plants from which it was possible to obtain phloem sap in a rather pure state. It was found that the addition of potassium and magnesium as a chloride in the usual investigated range of concentrations did not give precipitation. With calcium and manganese, however, a precipitate soon occurred. Manganese was demonstrated to be less soluble than calcium. For Ricinus the maximum amount of calcium and manganese the sieve tube sap could contain before precipitation set in was higher than for Yucca sap. The results confirm the possibility that the redistribution of the different cations in the plant can be related inter alia to their solubility in the sieve tube sap. It was also found that the calcium in the phloem sap is present in ionic condition. Thus the normal laws of solubility should be applicable.  相似文献   

3.
  • Aluminium (Al) is toxic to most plants. Nevertheless, some species accumulate Al without showing toxicity symptoms. Previous studies have evidenced Al in chloroplasts of Al-accumulating species from the Cerrado vegetation in South America. We ask whether Al increases carbon assimilation through enhanced apparent efficiency of Rubisco.
  • Seedlings of the Al-accumulator Qualea grandiflora (Vochysiaceae) were grown in nutrient solution with 0, 740, and 1480 μm Al. Growth parameters, relative leaf water content, Al concentration in organs, gas exchange and apparent carboxylation efficiency (measured from A/Ci curves) were evaluated for 60 days.
  • Plants without Al showed no root growth, necrotic roots, low gas exchange rates, and decreased apparent carboxylation efficiency. Al-treated plants, however, showed new white roots and increased root biomass leading to higher leaf hydration, and apparent carboxylation efficiency was higher in these plants. Increased Al available in the nutrient solution increased Al accumulation in plant organs.
  • Absence of Al compromised root integrity in Q. grandiflora, thus limiting leaf hydration. No positive direct effect of Al on Rubisco was evidenced in Al-treated plants.
  相似文献   

4.
Aphid activities during sieve element punctures   总被引:13,自引:0,他引:13  
Aphid salivation in sieve elements and phloem sap ingestion were linked to waveforms in the Electrical Penetration Graph (EPG). Non-viruliferousRhopalosiphum padi (L.) (Hemiptera, Aphididae) on barley yellow dwarf virus (BYDV) infected wheat could acquire the virus, which was used as an indication for phloem sap ingestion, whereas virus inoculation by viruliferous aphids on healthy plants was associated with salivation in sieve elements or other phloem cells. Probing was monitored and the waveforms recorded were related to ELISA results of test plants. The EPG patterns A, B, and C are indicative of the stylet pathway phase, whereas patterns E1 and E2 reflect the phloem (sieve element) phase with an unknown activity (E1) or with ingestion and concurrent salivation (E2). Aphids showing pathway and E1 rarely acquired virus, suggesting that little or no phloem sap ingestion can occur during these patterns, whereas those showing additionally pattern E2 did so substantially, indicating phloem sap ingestion. The main pattern related to virus inoculation was E1, although some aphids were able to inoculate plants during pathway. Pattern E1 clearly reflects the most important salivation into sieve elements. Pattern E2 had no clear contribution to virus inoculation, supporting the present hypothesis that during this pattern the saliva is mixed with the phloem sap in the single canal at the stylet tips and ingested immediately, without reaching the plant tissue. Sustained sap ingestion did not affect virus inoculation. So, BYDV inoculation mainly occurs during the first period of a sieve element puncture which is always formed by E1. Implications on persistent virus transmission are discussed.  相似文献   

5.
In a mature mixed subalpine stand ofTsuga mertensiana andAbies amabilis, significantly higher Al levels were found in foliage, branch and root tissues ofT. mertensiana.Tsuga mertensiana had significant increases in Al, Ca and Mn levels with increasing foliage age. In current foliage,T. mertensiana had lower levels of Ca, similar levels of Mg and P, and higher levels of Mn thanA. amabilis. Both tree species had Cu and Fe present at higher levels in branch than foliage tissues. Fine roots had the highest concentrations of Al, Fe and Cu but the lowest Ca and Mn concentrations of all tissues analyzed. In the roots of both species, phloem tissues always had significantly higher Al levels than xylem. Fine roots (< 1 and 1–2 mm) ofT. mertensiana had higher Al levels than were found inA. amabilis. Roots greater than 2 mm in diameter exhibited no significant differences in Al levels in phloem or xylem tissue betweenA. amabilis andT. mertensiana. The two species show a clear difference in their ability to accumulate specific elements from the soil.  相似文献   

6.
石山稀有濒危植物在迁地保护后的性状变异   总被引:8,自引:0,他引:8  
本文对比研究了7种石山稀有濒危植物在石灰岩土壤以及迁移到酸性土壤后的外形特征,生长发育习性及化学元素含量,结果表明,7种石山稀有濒危植物迁移到酸性土壤后发生了以下变化:1)外形变化主要表现为叶片变大变薄,有的植物种子或叶形有变化;2)迁移后开花,结实,落叶期晚1周以上,在气候条件相同的地区,营养生长期没有变化;3)植物体内的化学元素N,Zn,B,Al的含量增加20%以上,而Ca含量减少10%;4)Al的含量虽增加很多,但仍远低于酸性土壤中的植物;Ca的含量虽然减少,但仍高于酸性土壤植物;5)元素K,B的生物吸收系数在石灰岩土壤高于酸性土壤,其他元素N,P,Ca,Mg,Fe,Al,Mn,Zn的生物吸收系数则是酸性土壤高于石灰岩土壤。  相似文献   

7.
Many elements of the lanthanide series exist as trivalent cations in solution below pH 6. The present study was carried out to investigate whether lanthanides could stimulate malate efflux from wheat (Triticum aestivum L.) roots, as has been found for trivalent aluminium (Al) cations. Excised root apices treated with 100 µm of each of seven different lanthanide elements (lanthanum, praseodymium, europium, gadolinium, terbium, erbium, and ytterbium) stimulated malate efflux, with five‐ to fifty‐fold more malate being released from an Al‐tolerant wheat line than from a near‐isogenic Al‐sensitive line. As erbium stimulated the greatest malate efflux of the lanthanides tested, this response was characterized further. The characteristics of the erbium‐activated efflux were similar to the Al‐activated efflux described previously suggesting that both of these ions activate the same transport mechanism. The capacity for erbium‐activated malate efflux cosegregated with Al tolerance in wheat seedlings derived from a cross between Al‐sensitive and Al‐tolerant near‐isogenic lines. This is the first study to identify cations, other than Al, which can activate malate release from wheat roots. It also provides additional evidence that malate efflux from root apices is the primary mechanism for Al tolerance in wheat.  相似文献   

8.
9.
It has been suggested that LeFRK2, the major fructose-phosphorylating enzyme in tomato plants, may be required for stem xylem development. Yet, we do not know if this enzyme affects the development of individual vessels, whether it affects water conductance, or whether it affects phloem development and sugar transport. Here, we show that suppression of LeFRK2 results in a significant reduction in the size of vascular cells and slows fiber maturation. The vessels in stems of LeFRK2-antisense plants are narrower than in WT plants and have thinner secondary cell walls. Although the cambium produces rounded secondary vessels, these vessels become deformed during the early stages of xylem maturation. Water conductance is then reduced in stems, roots, and leaves, suggesting that LeFRK2 influences xylem development throughout the entire vascular system. Interestingly, the build-up of positive xylem pressure under static (no-flow) conditions was also decreased. Suppression of LeFRK2 reduced the length and width of the sieve elements, as well as callose deposition. To examine the effect of LeFRK2 suppression on phloem transport, we created triple-grafted plants in which a portion of the wild-type stem was replaced with an antisense interstcok, and compared the contents of the transported sugar, sucrose, in the different portions of these stems. Sucrose contents above and within the LeFRK2-antisense interstock were significantly higher than those below the graft. These results show that the antisense interstock restricted the downward movement of sucrose, suggesting that LeFRK2 is required for both phloem and xylem development. Contribution No. 114/2009 from the Volcani Center ARO.  相似文献   

10.
A sensitive and specific radioimmunoassay was used to determine quantitatively four of the most important phytohormones in the phloem exudate from 14 different tree species of 8 genera. For cytokinins and indole-3-acetic acid (IAA) we found higher concentrations than those reported previously for other species. The gibberellin values were of the same order of magnitude as in earlier analyses (with different methods) of tree phloem exudates, but lower than the ones reported for Ricinus. Free abscisic acid (ABA) was found in tree phloem exudates in similar concentrations as before in Yucca or palm phloem exudate, but at considerably lower ones than reported for Ricinus and in Lupinus phloem exudate.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA gibberellic acid  相似文献   

11.
Phloem histology in the petioles of two genera of Pennsylvanian ferns is detailed from coal balls collected at various localities in North America. Both Ankyropteris and Anachoropteris have primary phloem that completely surrounds the central xylem trace and is separated from it by a parenchymatous sheath. Ankyropteris contains very narrow (about 13.5 μm diam) sieve elements and a few strands of phloem parenchyma. End walls are either horizontal or slightly oblique and sieve areas as well as scattered individual pores have been observed. Anachoropteris phloem contains two different sizes of sieve elements. Small sieve elements that surround the C-shaped trace are similar to those seen in Ankyropteris. Larger elements (approximately 50–120 μm in diam) are present only within the C-shaped trace, and are elongate (up to 2.5 mm) with very oblique end walls. Sieve areas on these large cells are conspicuous, 5–8.5 μm in diam and aggregated into groups. The cell wall within each sieve area appears to be composed of criss-crossed fibrillar material. Phloem anatomy in these two ferns is compared to that previously described in other Carboniferous vascular cryptogams, as well as that known from extant plants.  相似文献   

12.
Tissue concentrations of 12 mineral elements (Al, Ca, Cu, Fe, K, Mg, Mn, amino-N, Na, P, Si, and Zn) were measured in an autoparasitic mistletoe (Phoradendron californicum), the parasitic mistletoe on which it was growing (Phoradendron californicum), and the host tree (Cercidium floridum). Mineral concentrations in the autoparasite were typically 1.1–1.3 times higher than in the parasite. Mineral concentrations of all elements except Ca, Fe, Mg, Mn, and Si were higher in the parasitic mistletoe than its host. Mineral concentration differences are discussed relative to accumulation via the transpiration stream and translocation within the host via the phloem.  相似文献   

13.
Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.  相似文献   

14.
R. B. Clark 《Plant and Soil》1977,47(3):653-662
Summary Growth and P, K, Ca, Mg, Mn, Zn, Fe, and Cu concentrations and contents were determined in Al-tolerant and Al-intolerant corn (Zea mays L.) inbreds when grown at various levels of Al. B57 was more tolerant to Al than was Oh40B. Relatively low Al levels (up to 5 mg/l) enhanced B57 growth but inhibited Oh40B growth. With few exceptions, Oh40B root and leaf concentrations of the elements decreased with added Al. The decreases in element concentrations were not as large for B57 as they were for Oh40B. The Mg concentrations and contents decreased more than the other elements in all inbreds with added Al. Root Mg decreased more than leaf Mg. Total uptake of some elements were higher at low Al than with no Al. Inasmuch as Mg has a pronounced effect on root growth, low Mg may be an important response in plants sensitive to Al.Journal article No. 82-75 of Department of Agronomy, Ohio Agricultural Research and Development Center, Wooster, Ohio.Journal article No. 82-75 of Department of Agronomy, Ohio Agricultural Research and Development Center, Wooster, Ohio.  相似文献   

15.
This study addressed whether the winter annual Arabidopsis thaliana can adjust foliar phloem and xylem anatomy both differentially and in parallel. In plants acclimated to hot vs cool temperature, foliar minor vein xylem‐to‐phloem ratio was greater, whereas xylem and phloem responded concomitantly to growth light intensity. Across all growth conditions, xylem anatomy correlated with transpiration rate, while phloem anatomy correlated with photosynthetic capacity for two plant lines (wild‐type Col‐0 and tocopherol‐deficient vte1 mutant) irrespective of tocopherol status. A high foliar vein density (VD) was associated with greater numbers and cross‐sectional areas of both xylem and phloem cells per vein as well as higher rates of both photosynthesis and transpiration under high vs low light intensities. Under hot vs cool temperature, high foliar VD was associated with a higher xylem‐to‐phloem ratio and greater relative rates of transpiration to photosynthesis. Tocopherol status affected development of foliar vasculature as dependent on growth environment. The most notable impact of tocopherol deficiency was seen under hot growth temperature, where the vte1 mutant exhibited greater numbers of tracheary elements (TEs) per vein, a greater ratio of TEs to sieve elements, with smaller individual sizes of TEs, and resulting similar total areas of TEs per vein and transpiration rates compared with Col‐0 wild‐type. These findings illustrate the plasticity of foliar vascular anatomy acclimation to growth environment resulting from independent adjustments of the vasculature's components.  相似文献   

16.
The alkali metals cesium, rubidium, lithium and sodium were introduced together with strontium via flaps into leaf laminas or into the stem of maturing, intact winter wheat (Triticum aestivum L. cv. Arina) grown in a field. Long-distance transport of these elements and the influence of the application date and of different application positions were investigated. The phloem-immobile Sr served as a marker for the distribution of the xylem sap in the plants. Dry matter accumulation in the grains and the transpiration per shoot were not markedly affected by the treatments as compared to control plants. The phloem mobility was rather high for Cs and Rb. Li was almost immobile in the phloem (similarly to Sr). An application into the cut stem xylem below the second leaf node contributed more to the contents in the grains than an application into the flag leaf. An earlier feeding date led to a higher accumulation in the grains. The marked losses of the elements applied during maturation (most pronounced for Li) can be explained by leakage in the rain.  相似文献   

17.
There are gaps in our understanding of plant responses under different insect phytophagy modes and their subsequent effects on the insect herbivores’ performance at late season. Here we compared different types of insect feeding by an aphid, Lipaphis erysimi, and a lepidopteran, Plutella xylostella, and how this affected defensive metabolites in leaves of 2 Brassica species when plants gain maturity. Thiocyanate concentrations after P. xylostella and L. erysimi feeding activities were the same. Total phenolics was higher after the phloem feeder feeding than the folivore activity. The plants compensatory responses (i.e., tolerance) to L. erysimi feeding was significantly higher than the responses to P. xylostella. This study showed that L. erysimi had higher carbon than P. xylostella whereas nitrogen in P. xylostella was 1.42 times that in L. erysimi. Population size of the phloem feeder was not affected by plant species or insect coexistence. However, there was no correlation between plant defensive metabolites and both insects’ population size and biomass. This suggests that plant root biomass and tolerance index after different insect herbivory modes are not necessarily unidirectional. Importantly, the interaction between the folivore and the phloem feeder insects is asymmetric and the phloem feeder might be a trickier problem for plants than the folivore. Moreover, as both plants’ common and special defenses decreased under interspecific interference, we suggest that specialist insect herbivores can be more challenged in ecosystems in which plants are not involved in interspecific interference.  相似文献   

18.
Resistance of the melon line TGR‐1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (E1) and SE ingestion (E2). Cross‐sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron‐dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E1 salivation are discussed on the basis of our results.  相似文献   

19.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

20.
Abstract.The effects of water stress on phloem sap quality of the melon, Cucumis melo, and how this, in turn, has an impact on the sweet potato whitefly, Bemisia tabaci were studied. Melon plants were grown under watering regimes that produced plants with or without water stress. Plants showed strong developmental responses to the treatments; water-stressed plants were shorter, with fewer, smaller leaves than those without stress. There was, however, no effect of plant water stress on the development period of whiteflies feeding on these plants, or on the weights of male or female adults. Honeydew production was used as an indirect measure to test whether the absence of insect developmental or behavioural effects was due to differential phloem sap ingestion. Feeding rates on the stressed plants were almost half those on unstressed plants, and there was also variation in the daily pattern of honeydew production. Phloem sap and honeydew were analysed to determine why the feeding behaviours differed. Amino acid composition of the phloem sap was similar in both groups of plants, but carbohydrate concentrations were greater in water-stressed plants, indicating that lower feeding rates may have been due either to the physical or nutritional quality of the phloem sap. The honeydew of insects that were feeding on water-stressed plants contained a greater concentration of carbohydrate than those on unstressed plants, and was composed of a significantly greater proportion of glucose and the disaccharide, trehalulose. This isomerization of more complex sugars from those in the diet suggests that B. tabaci uses a mechanism of osmoregulation to actively maintain its internal water status. It is concluded that transient conditions of water stress in this host plant do not affect the development of B. tabaci, due to physiological and behavioural changes in response to diets with different nutritional and physical properties. The implications of this finding for the feeding biology of B. tabaci on desert-grown crops are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号