首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.Bacillus anthracis is a highly virulent bacterium, which is the etiologic agent of anthrax, an acute and often lethal disease of animals and humans (1). According to the Centers for Disease Control and Prevention, B. anthracis is classified as a category A agent, the highest rank of potential bioterrorism agents (http://www.bt.cdc.gov/agent/agentlist-category.asp). The infectious agent of anthrax, the spore, was used as a bioterrorism weapon in 2001 in the United States when mailed letters containing B. anthracis spores caused 22 cases of inhalational and/or cutaneous anthrax, five of which were lethal (2). These events have emphasized the need for rapid and accurate detection of B. anthracis spores.Bacillus anthracis is a member of the genus Bacillus, Gram-positive, rod-shaped bacteria characterized by the ability to form endospores under aerobic or facultative anaerobic conditions (3). The genus Bacillus is a widely heterogeneous group encompassing 268 validly described species to date (http://www.bacterio.net/b/bacillus.html, last accessed on August 9th 2013). B. anthracis is part of the B. cereus group which consists of six distinct species: B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. pseudomycoides, and B. weihenstephanensis (4, 5). The latter three species are generally regarded as nonpathogenic whereas B. cereus and B. thuringiensis could be opportunistic or pathogenic to mammals or insects (5, 6). B. cereus is a ubiquitous species that lives in soil but is also found in foods of plant and animal origin, such as dairy products (7). Its occurrence has also been linked to food poisoning and it can cause diarrhea and vomiting (6, 8). B. thuringiensis is primarily an insect pathogen, also present in soil, and often used as a biopesticide (9).B. anthracis is highly monomorphic, that is, shows little genetic variation (10), and primarily exists in the environment as a highly stable, dormant spore in the soil (1). Specific identification of B. anthracis is challenging because of its high genetic similarity (sequence similarity >99%) with B. cereus and B. thuringiensis (5, 11). The fact that these closely related species are rather omnipresent in the environment further complicates identification of B. anthracis. The main difference among these three species is the presence in B. anthracis of the two virulence plasmids pXO1 and pXO2 (1), which are responsible for its pathogenicity. pXO1 encodes a tripartite toxin (protective antigen (PA), lethal factor (LF), and edema factor (EF)) which causes edema and death (1), whereas pXO2 encodes a poly-γ-d-glutamate capsule which protects the organism from phagocytosis (1). B. anthracis identification often relies on the detection of the genes encoded by these two plasmids via nucleic acid-based assays (1214). Nevertheless, the occasionally observed loss of the pXO2 plasmid within environmental species may impair the robustness of detection (1). In addition, in recent years a series of findings has shown that the presence of pXO1 and pXO2 is not a unique feature of B. anthracis. Indeed, Hu et al. have demonstrated that ∼7% of B. cereus/B. thuringiensis species can have a pXO1-like plasmid and ∼1.5% a pXO2-like plasmid (15). This was particularly underlined for some virulent B. cereus strains (i.e. B. cereus strains G9241, B. cereus biovar anthracis strains CA and CI) (1620).Because of these potential drawbacks, the use of chromosome-encoded genes would be preferable for the specific detection of B. anthracis. Such genes (rpoB, gyrA, gyrB, plcR, BA5345, and BA813) have been reported as potential markers (2125), but concerns have also been raised about their ability to discriminate B. anthracis efficiently from closely related B. cereus strains (26). Ahmod et al. have recently pointed out, by in silico database analysis, that a specific sequence deletion (indel) occurs in the yeaC gene and exploited it for the specific identification of B. anthracis (27). Nevertheless, a few B. anthracis strains (e.g. B. anthracis A1055) do not have this specific deletion and so may lead to false-negative results (27).In the last few years, protein profiling by MS, essentially based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS), has emerged as an alternative (or a complement) to genotypic or phenotypic methods for the fast and efficient identification of microorganisms (28, 29). Such an approach is based on the reproducible acquisition of global bacterial protein fingerprints/patterns. The combination of MS-based protein patterns and chemometric/bioinformatic tools has been demonstrated to efficiently differentiate members of the B. cereus group from other Bacillus species (30). However, the specific discrimination of B. anthracis from the closely related B. cereus and B. thuringiensis remains difficult (30). This study of Lasch and coworkers, performed on vegetative cells, identified a few ribosomal and spore proteins as being responsible for this clustering (30). Closer inspection of the data revealed that B. anthracis identification was essentially based on one particular isoform of the small acid-soluble spore protein B (SASP-B)1 (3034), which is exclusively expressed in spores, as the samples were shown to contain residual spores. However, the specificity of SASP-B has recently been questioned as the published genomes of B. cereus biovar anthracis CI and B. thuringiensis BGSC 4CC1 strains have been shown to share the same SASP-B isoform as B. anthracis (35). Altogether these results underline that the quest for specific markers of B. anthracis needs to be pursued.Mass spectrometry also represents a powerful tool for the discovery and identification of protein markers (36, 37). In the case of B. anthracis, this approach has more commonly been used for the comprehensive characterization of given bacterial proteomes. For example, the proteome of vegetative cells with variable plasmid contents has been extensively studied (3840), as the proteomes of mature spores (41, 42) and of germinating spores (43, 44). Only one recent study, based on a proteo-genomic approach, was initiated to identify protein markers of B. anthracis (45). In this work, potential markers were characterized but using a very limited number of B. cereus group strains (three B. cereus and two B. thuringiensis). Moreover, this study was done on vegetative cells, whereas the spore proteome is drastically different. To our knowledge, no study has characterized and validated relevant protein markers specific to B. anthracis spores, which constitute the dissemination form of B. anthracis and are often targeted by first-line immunodetection methods (46).Here we report comparative proteomics analyses of Bacillus anthracis/cereus/thuringiensis spores, undertaken to identify proteoforms unique to B. anthracis. Preliminary identification was performed on a limited set of Bacillus species both at the peptide (after enzymatic digestion) and protein levels by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using a high resolution/high mass accuracy LTQ-Orbitrap instrument. The pertinence of 11 markers was further demonstrated using proteomics and genomics approaches on a representative larger set of up to 55 different strains, including the closely related B. cereus biovar anthracis CI, CA, and B. thuringiensis 9727. Lastly, as a proof-of-concept study, we also report for four B. anthracis markers the implementation of a targeted LC-MS/MS method using selected reaction monitoring (SRM), based on the extension of a previous one focused on SASP-B (35). Preliminary results regarding method usefulness for the high throughput and accurate detection of B. anthracis spores in complex samples were also obtained and will be reported herein.  相似文献   

2.
The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein.Many bacteria and archaea possess crystalline bacterial cell surface layers (S-layers) as their outermost cell envelope component (3, 36, 38). S-layers are composed of identical protein or glycoprotein subunits which assemble into two-dimensional crystalline arrays showing oblique, square, or hexagonal lattice symmetry. S-layer subunits from bacteria are linked to each other and to the underlying cell envelope layer by noncovalent interactions and may therefore be isolated from whole cells or cell wall fragments by different procedures involving chaotropic agents, detergents, chelating agents, or high salt concentrations or by alkaline or acidic pH conditions. During removal of the disrupting agents, e.g., by dialysis, the S-layer subunits frequently reassemble into flat sheets or open-ended cylinders (in vitro self-assembly in suspension; for reviews, see references 37 and 38).Studies regarding the binding mechanism between the S-layer protein and the underlying cell envelope layer have shown that in gram-negative bacteria, the N-terminal region of the S-layer subunits recognizes specific lipopolysaccharides in the outer membrane (9, 29, 41). For Aeromonas hydrophila it was found, however, that the C-terminal part of the S-layer protein is essential for interaction with the outer membrane (40). A similar observation was reported for the S-layer protein from the gram-positive Corynebacterium glutamicum. A hydrophobic stretch of 21 amino acids located at the C-terminal end of the S-layer protein was found to interact with a hydrophobic layer in the cell wall proper that most probably consisted of mycolic acid (8). In earlier studies it was suggested that secondary cell wall polymers could represent the binding sites for the S-layer proteins from Bacillus sphaericus (15, 16) and Lactobacillus buchneri (24).Recently, a high-molecular-weight secondary cell wall polymer (SCWP) containing glucose and N-acetylglucosamine (GlcNAc) was extracted from peptidoglycan-containing sacculi of two Bacillus stearothermophilus wild-type strains (PV72/p6 and ATCC 12980 [10]). An SCWP of different chemical composition could be isolated from peptidoglycan-containing sacculi of an oxygen-induced variant strain from B. stearothermophilus PV72/p6 (35). The SCWP produced by this variant strain (B. stearothermophilus PV72/p2) is mainly composed of GlcNAc and N-acetylmannosamine (ManNAc) and shows a molecular weight of about 24,000 (33). Binding studies with proteolytic cleavage fragments and native peptidoglycan-containing sacculi revealed that the N-terminal region is involved in anchoring the S-layer subunits to the rigid cell wall layer (10, 11, 33). Several observations have supported the notion that a specific recognition and binding mechanism exists between the SCWP and the N-terminal region of the S-layer proteins from B. stearothermophilus strains. (i) Despite the overall heterogeneity, S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region and are capable of binding to an SCWP of identical chemical composition. (ii) B. stearothermophilus PV72/p6 and the oxygen-induced p2 variant produce an SCWP of different chemical composition and structure. (iii) The S-layer protein from B. stearothermophilus PV72/p2 did not recognize native peptidoglycan-containing sacculi from B. stearothermophilus wild-type strains as binding sites (35). (iv) The S-layer protein from B. stearothermophilus PV72/p6 (SbsA) and the oxygen-induced p2 variant (SbsB) are encoded by different genes which show little overall identity (19, 20), and only SbsB possesses a typical S-layer homologous (SLH) domain (23) at the N-terminal part.By sequence comparison, SLH domains (23) were identified on the N-terminal part of several S-layer proteins (6, 13, 23, 27, 30) or at the very C-terminal end of cell-associated exoenzymes and exoproteins (21, 22, 25, 26). SLH domains were suggested to anchor these proteins permanently or transiently to the cell surface. So far, evidence for a binding function of an SLH domain was provided for the S-layer protein of Thermus thermophilus (30) and for the outer-layer proteins of the cellulosome complex from Clostridium thermocellum (21, 22).In the present study, the influence of the SCWP on the formation of self-assembly products in suspension and on the recrystallization properties of the S-layer protein from B. stearothermophilus PV72/p2 on solid supports such as poly-l-lysine-coated electron microscopy (EM) grids was investigated. Moreover, studies on the stability of the S-layer protein against endoproteinase Glu-C attack in the presence and the absence of the SCWP were carried out.  相似文献   

3.
Bacillus anthracis elaborates a poly-γ-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the γ-glutamyltranspeptidase CapD with and without α-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-γ-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-γ-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro427, Gly428, and Gly429 activate the catalytic residue of the enzyme, Thr352, and stabilize an oxyanion hole via main chain amide hydrogen bonds.Spores of Bacillus anthracis are the causative agents of anthrax disease (1). Upon entry into their hosts, spores germinate and replicate as vegetative bacilli (1). The formation of a thick capsule encasing vegetative forms enables bacilli to escape granulocyte0 and macrophage-mediated phagocytosis, and the pathogen eventually disseminates throughout all tissues of an infected host (2, 3). Bacilli secrete lethal and edema toxins, which cause macrophage necrosis and precipitate anthrax death (47). The genes providing for toxin and capsule formation are carried on two large virulence plasmids, pXO1 and pXO2, respectively (8, 9). Loss of any one plasmid leads to virulence attenuation, a feature that has been exploited for the generation of vaccine-type strains (1014).Unlike polysaccharide-based capsules that are commonly found in bacterial pathogens, the capsular material of B. anthracis is composed of poly-γ-d-glutamic acid (PDGA)3 (3). All the genes necessary for capsule biogenesis are located in the capBCADE gene cluster on plasmid pXO2 (1519). CapD is the only protein of this cluster that is located on the bacterial surface (16). CapD shares sequence similarity with bacterial and mammalian γ-glutamyl transpeptidases (GGTs; EC 2.3.2.2) (17). GGTs belong to the N-terminal nucleophile hydrolases (Ntn) family (Protein Structure Classification (Class (C), Architecture (A), Topology (T) and Homologous superfamily (H)) (CATH) id 3.60.60.10) (20). These enzymes assemble as a single polypeptide chain and acquire activity by undergoing autocatalytic processing to heterodimer.Bacterial GGTs catalyze the first step in glutathione degradation. For example, Helicobacter pylori GGT removes glutamate from glutathione tripeptide via the formation of a γ-glutamyl acyl enzyme. This intermediate is resolved by the nucleophilic attack of a water molecule, causing the release of γ-glutamate (21, 22). Mammalian enzymes transfer the γ-glutamyl intermediate to the amino group of a peptide, thereby completing a transpeptidation reaction (23). The B. anthracis CapD precursor is also programmed for autocatalytic cleavage (17). Similar to mammalian GGTs, CapD also catalyzes a transpeptidation reaction; however, this reaction promotes the covalent linkage of PDGA to the bacterial envelope (16, 24). We have recently demonstrated the cell wall anchor structure of capsule filaments in the envelope of B. anthracis, identifying an amide bond between the terminal carboxyl group of PDGA and the side amino group of m-diaminopimelic acid cross-bridges within muropeptides (24). The CapD-catalyzed transpeptidation reaction could be recapitulated in vitro using purified recombinant CapD, γ-d-Glun peptide, and muropeptide substrates (24). In the absence of the physiological nucleophile (muropeptides), CapD acyl intermediates can be resolved by the nucleophilic attack of water to generate hydrolysis products.Here, we report the high resolution crystal structure of CapD in the absence and presence of a glutamate dipeptide and compare it with the known structures of H. pylori and Escherichia coli GGTs. By combining structural, genetic, and biochemical approaches, we identify the unique features of CapD that distinguish the protein from GGTs and detect several residues that are important for CapD autocatalytic cleavage and PDGA processing. This structural information will further the development of small molecule inhibitors that disrupt CapD activity and that may be useful as anti-infective therapies for anthrax.  相似文献   

4.
5.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

6.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

7.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

8.
9.
The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.Acinetobacter baumannii is an emerging opportunistic pathogen of increasing significance to health care institutions worldwide (13). The growing number of identified multiple drug resistant (MDR)1 strains (24), the ability of isolates to rapidly acquire resistance (3, 4), and the propensity of this agent to survive harsh environmental conditions (5) account for the increasing number of outbreaks in intensive care, burn, or high dependence health care units since the 1970s (25). The burden on the global health care system of MDR A. baumannii is further exacerbated by standard infection control measures often being insufficient to quell the spread of A. baumannii to high risk individuals and generally failing to remove A. baumannii from health care institutions (5). Because of these concerns, there is an urgent need to identify strategies to control A. baumannii as well as understand the mechanisms that enable its persistence in health care environments.Surface glycans have been identified as key virulence factors related to persistence and virulence within the clinical setting (68). Acinetobacter surface carbohydrates were first identified and studied in A. venetianus strain RAG-1, leading to the identification of a gene locus required for synthesis and export of the surface carbohydrates (9, 10). These carbohydrate synthesis loci are variable yet ubiquitous in A. baumannii (11, 12). Comparison of 12 known capsule structures from A. baumannii with the sequences of their carbohydrate synthesis loci has provided strong evidence that these loci are responsible for capsule synthesis with as many as 77 distinct serotypes identified by molecular serotyping (11). Because of the non-template driven nature of glycan synthesis, the identification and characterization of the glycans themselves are required to confirm the true diversity. This diversity has widespread implications for Acinetobacter biology as the resulting carbohydrate structures are not solely used for capsule biosynthesis but can be incorporated and utilized by other ubiquitous systems, such as O-linked protein glycosylation (13, 14).Although originally thought to be restricted to species such as Campylobacter jejuni (15, 16) and Neisseria meningitidis (17), bacterial protein glycosylation is now recognized as a common phenomenon within numerous pathogens and commensal bacteria (18, 19). Unlike eukaryotic glycosylation where robust and high-throughput technologies now exist to enrich (2022) and characterize both the glycan and peptide component of glycopeptides (2325), the diversity (glycan composition and linkage) within bacterial glycosylation systems makes few technologies broadly applicable to all bacterial glycoproteins. Because of this challenge a deeper understanding of the glycan diversity and substrates of glycosylation has been largely unachievable for the majority of known bacterial glycosylation systems. The recent implementation of selective glycopeptide enrichment methods (26, 27) and the use of multiple fragmentation approaches (28, 29) has facilitated identification of an increasing number of glycosylation substrates independent of prior knowledge of the glycan structure (3033). These developments have facilitated the undertaking of comparative glycosylation studies, revealing glycosylation is widespread in diverse genera and far more diverse then initially thought. For example, Nothaft et al. were able to show N-linked glycosylation was widespread in the Campylobacter genus and that two broad groupings of the N-glycans existed (34).During the initial characterization of A. baumannii O-linked glycosylation the use of selective enrichment of glycopeptides followed by mass spectrometry analysis with multiple fragmentation technologies was found to be an effective means to identify multiple glycosylated substrates in the strain ATCC 17978 (14). Interestingly in this strain, the glycan utilized for protein modification was identical to a single subunit of the capsule (13) and the loss of either protein glycosylation or glycan synthesis lead to decreases in biofilm formation and virulence (13, 14). Because of the diversity in the capsule carbohydrate synthesis loci and the ubiquitous distribution of the PglL O-oligosaccharyltransferase required for protein glycosylation, we hypothesized that the glycan variability might be also extended to O-linked glycosylation. This diversity, although common in surface carbohydrates such as the lipopolysaccharide of numerous Gram-negative pathogens (35), has only recently been observed within bacterial proteins glycosylation system that are typically conserved within species (36) and loosely across genus (34, 37).In this study, we explored the diversity within the O-linked protein glycosylation systems of Acinetobacter species. Our analysis complements the recent in silico studies of A. baumannii showing extensive glycan diversity exists in the carbohydrate synthesis loci (11, 12). Employing global strategies for the analysis of glycosylation, we experimentally demonstrate that the variation in O-glycan structure extends beyond the genetic diversity predicted by the carbohydrate loci alone and targets proteins of similar properties and identity. Using this knowledge, we developed a targeted approach for the detection of protein glycosylation, enabling streamlined analysis of glycosylation within a range of genetic backgrounds. We determined that; O-linked glycosylation is widespread in clinically relevant Acinetobacter species; inter- and intra-strain heterogeneity exist within glycan structures; glycan diversity, although extensive results in the generation of glycans with similar properties and that the utilization of a single glycan for capsule and O-linked glycosylation is a general feature of A. baumannii but may not be a general characteristic of all Acinetobacter species such as A. baylyi.  相似文献   

10.
11.
Glycoprotein structure determination and quantification by MS requires efficient isolation of glycopeptides from a proteolytic digest of complex protein mixtures. Here we describe that the use of acids as ion-pairing reagents in normal-phase chromatography (IP-NPLC) considerably increases the hydrophobicity differences between non-glycopeptides and glycopeptides, thereby resulting in the reproducible isolation of N-linked high mannose type and sialylated glycopeptides from the tryptic digest of a ribonuclease B and fetuin mixture. The elution order of non-glycopeptides relative to glycopeptides in IP-NPLC is predictable by their hydrophobicity values calculated using the Wimley-White water/octanol hydrophobicity scale. O-linked glycopeptides can be efficiently isolated from fetuin tryptic digests using IP-NPLC when N-glycans are first removed with PNGase. IP-NPLC recovers close to 100% of bacterial N-linked glycopeptides modified with non-sialylated heptasaccharides from tryptic digests of periplasmic protein extracts from Campylobacter jejuni 11168 and its pglD mutant. Label-free nano-flow reversed-phase LC-MS is used for quantification of differentially expressed glycopeptides from the C. jejuni wild-type and pglD mutant followed by identification of these glycoproteins using multiple stage tandem MS. This method further confirms the acetyltransferase activity of PglD and demonstrates for the first time that heptasaccharides containing monoacetylated bacillosamine are transferred to proteins in both the wild-type and mutant strains. We believe that IP-NPLC will be a useful tool for quantitative glycoproteomics.Protein glycosylation is a biologically significant and complex post-translational modification, involved in cell-cell and receptor-ligand interactions (14). In fact, clinical biomarkers and therapeutic targets are often glycoproteins (59). Comprehensive glycoprotein characterization, involving glycosylation site identification, glycan structure determination, site occupancy, and glycan isoform distribution, is a technical challenge particularly for quantitative profiling of complex protein mixtures (1013). Both N- and O-glycans are structurally heterogeneous (i.e. a single site may have different glycans attached or be only partially occupied). Therefore, the MS1 signals from glycopeptides originating from a glycoprotein are often weaker than from non-glycopeptides. In addition, the ionization efficiency of glycopeptides is low compared with that of non-glycopeptides and is often suppressed in the presence of non-glycopeptides (1113). When the MS signals of glycopeptides are relatively high in simple protein digests then diagnostic sugar oxonium ion fragments produced by, for example, front-end collisional activation can be used to detect them. However, when peptides and glycopeptides co-elute, parent ion scanning is required to selectively detect the glycopeptides (14). This can be problematic in terms of sensitivity, especially for detecting glycopeptides in digests of complex protein extracts.Isolation of glycopeptides from proteolytic digests of complex protein mixtures can greatly enhance the MS signals of glycopeptides using reversed-phase LC-ESI-MS (RPLC-ESI-MS) or MALDI-MS (1524). Hydrazide chemistry is used to isolate, identify, and quantify N-linked glycopeptides effectively, but this method involves lengthy chemical procedures and does not preserve the glycan moieties thereby losing valuable information on glycan structure and site occupancy (1517). Capturing glycopeptides with lectins has been widely used, but restricted specificities and unspecific binding are major drawbacks of this method (1821). Under reversed-phase LC conditions, glycopeptides from tryptic digests of gel-separated glycoproteins have been enriched using graphite powder medium (22). In this case, however, a second digestion with proteinase K is required for trimming down the peptide moieties of tryptic glycopeptides so that the glycopeptides (typically <5 amino acid residues) essentially resemble the glycans with respect to hydrophilicity for subsequent separation. Moreover, the short peptide sequences of the proteinase K digest are often inadequate for de novo sequencing of the glycopeptides.Glycopeptide enrichment under normal-phase LC (NPLC) conditions has been demonstrated using various hydrophilic media and different capture and elution conditions (2328). NPLC allows either direct enrichment of peptides modified by various N-linked glycan structures using a ZIC®-HILIC column (2327) or targeting sialylated glycopeptides using a titanium dioxide micro-column (28). However, NPLC is neither effective for enriching less hydrophilic glycopeptides, e.g. the five high mannose type glycopeptides modified by 7–11 monosaccharide units from a tryptic digest of ribonuclease b (RNase B), nor for enriching O-linked glycopeptides of bovine fetuin using a ZIC-HILIC column (23). The use of Sepharose medium for enriching glycopeptides yielded only modest recovery of glycopeptides (28). In addition, binding of hydrophilic non-glycopeptides with these hydrophilic media contaminates the enriched glycopeptides (23, 28).We have recently developed an ion-pairing normal-phase LC (IP-NPLC) method to enrich glycopeptides from complex tryptic digests using Sepharose medium and salts or bases as ion-pairing reagents (29). Though reasonably effective the technique still left room for significant improvement. For example, the method demonstrated relatively modest glycopeptide selectivity, providing only 16% recovery for high mannose type glycopeptides (29). Here we report on a new IP-NPLC method using acids as ion-pairing reagents and polyhydroxyethyl aspartamide (A) as the stationary phase for the effective isolation of tryptic glycopeptides. The method was developed and evaluated using a tryptic digest of RNase B and fetuin mixture. In addition, we demonstrate that O-linked glycopeptides can be effectively isolated from a fetuin tryptic digest by IP-NPLC after removal of the N-linked glycans by PNGase F.The new IP-NPLC method was used to enrich N-linked glycopeptides from the tryptic digests of protein extracts of wild-type (wt) and PglD mutant strains of Campylobacter jejuni NCTC 11168. C. jejuni has a unique N-glycosylation system that glycosylates periplasmic and inner membrane proteins containing the extended N-linked sequon, D/E-X-N-X-S/T, where X is any amino acid other than proline (3032). The N-linked glycan of C. jejuni has been previously determined to be GalNAc-α1,4-GalNAc-α1,4-[Glcβ1,3]-GalNAc-α1,4-GalNAc-α1,4-GalNAc-α1,3-Bac-β1 (BacGalNAc5Glc residue mass: 1406 Da), where Bac is 2,4-diacetamido-2,4,6-trideoxyglucopyranose (30). In addition, the glycan structure of C. jejuni is conserved, unlike in eukaryotic systems (3032). IP-NPLC recovered close to 100% of the bacterial N-linked glycopeptides with virtually no contamination of non-glycopeptides. Furthermore, we demonstrate for the first time that acetylation of bacillosamine is incomplete in the wt using IP-NPLC and label-free MS.  相似文献   

12.
13.
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.Sleeping sickness (African trypanosomiasis), caused by Trypanosoma brucei, and malaria, caused by Plasmodium falciparum, are significant, parasitic diseases of sub-Saharan Africa (1). Chagas'' disease (South American trypanosomiasis), caused by Trypanosoma cruzi, affects approximately, 16–18 million people in South and Central America. For all three of these protozoan diseases, resistance and toxicity to current therapies makes treatment increasingly problematic, and thus the development of new drugs is an important priority (24).T. cruzi, T. brucei, and P. falciparum produce an array of potential target enzymes implicated in pathogenesis and host cell invasion, including a number of essential and closely related papain-family cysteine proteases (5, 6). Inhibitors of cruzain and rhodesain, major cathepsin L-like papain-family cysteine proteases of T. cruzi and T. brucei rhodesiense (710) display considerable antitrypanosomal activity (11, 12), and some classes have been shown to cure T. cruzi infection in mouse models (11, 13, 14).In P. falciparum, the papain-family cysteine proteases falcipain-2 (FP-2)6 and falcipain-3 (FP-3) are known to catalyze the proteolysis of host hemoglobin, a process that is essential for the development of erythrocytic parasites (1517). Specific inhibitors, targeted to both enzymes, display antiplasmodial activity (18). However, although the abnormal phenotype of FP-2 knock-outs is “rescued” during later stages of trophozoite development (17), FP-3 has proved recalcitrant to gene knock-out (16) suggesting a critical function for this enzyme and underscoring its potential as a drug target.Sequence analyses and substrate profiling identify cruzain, rhodesain, and FP-3 as cathepsin L-like, and several studies describe classes of small molecule inhibitors that target multiple cathepsin L-like cysteine proteases, some with overlapping antiparasitic activity (1922). Among these small molecules, vinyl sulfones have been shown to be effective inhibitors of a number of papain family-like cysteine proteases (19, 2327). Vinyl sulfones have many desirable attributes, including selectivity for cysteine proteases over serine proteases, stable inactivation of the target enzyme, and relative inertness in the absence of the protease target active site (25). This class has also been shown to have desirable pharmacokinetic and safety profiles in rodents, dogs, and primates (28, 29). We have determined the crystal structures of cruzain, rhodesain, and FP-3 bound to vinyl sulfone inhibitors and performed inhibition kinetics for each enzyme. Our results highlight key areas of interaction between proteases and inhibitors. These results help validate the vinyl sulfones as a class of antiparasitic drugs and provide structural insights to facilitate the design or modification of other small molecule inhibitor scaffolds.  相似文献   

14.
15.
16.
17.
18.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

19.
Encapsulated Klebsiella pneumoniae is the predominant causative agent of pyogenic liver abscess, an emerging infectious disease that often complicates metastatic meningitis or endophthalmitis. The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found that protein-tyrosine kinases and phosphatases are involved. Therefore, the identification and characterization of such kinases, phosphatases, and their substrates would advance our knowledge of the underlying mechanism in capsule formation and could contribute to the development of new therapeutic strategies. Here, we analyzed the phosphoproteome of K. pneumoniae NTUH-K2044 with a shotgun approach and identified 117 unique phosphopeptides along with 93 in vivo phosphorylated sites corresponding to 81 proteins. Interestingly, three of the identified tyrosine phosphorylated proteins, namely protein-tyrosine kinase (Wzc), phosphomannomutase (ManB), and undecaprenyl-phosphate glycosyltransferase (WcaJ), were found to be distributed in the cps locus and thus were speculated to be involved in the converging signal transduction of capsule biosynthesis. Consequently, we decided to focus on the lesser studied ManB and WcaJ for mutation analysis. The capsular polysaccharides of WcaJ mutant (WcaJY5F) were dramatically reduced quantitatively, and the LD50 increased by 200-fold in a mouse peritonitis model compared with the wild-type strain. However, the capsular polysaccharides of ManB mutant (ManBY26F) showed no difference in quantity, and the LD50 increased by merely 6-fold in mice test. Our study provided a clear trend that WcaJ tyrosine phosphorylation can regulate the biosynthesis of capsular polysaccharides and result in the pathogenicity of K. pneumoniae NTUH-K2044.Protein phosphorylation is one of the most biologically relevant and ubiquitous post-translational modifications in both eukaryotic and prokaryotic organisms. It is best known that protein phosphorylation is a reversible enzyme-catalyzed process that is controlled by various kinases and phosphatases. The aberrant functions often result in irregular protein phosphorylation and ultimately lead to serious disease states such as malignant transformation, immune disorders, and pathogenic infections in mammals (1, 2). Recently, accumulating evidences suggest that Ser/Thr/Tyr phosphorylations also contribute to regulate a diverse range of cellular responses and physiological processes in prokaryotes (1). Among them, tyrosine phosphorylation in encapsulated bacteria has been discovered to play key roles in capsular polysaccharide (CPS1; K antigen) biosynthesis, which leads to virulence (3, 4). This thick layer of exopolysaccharide on many pathogenic bacteria can act as a physical boundary to evade phagocytosis and complement-mediated killing and further inhibit complement activation of the host (1, 5, 6).In 1996, Acinetobacter johnsonii protein-tyrosine kinase (Ptk) was first discovered and categorized under the bacterial protein-tyrosine kinase (BY-kinase) family (1, 7, 8). Shortly after, its function in bacterial exopolysaccharide production and transport was characterized (1, 7, 8). From then on, many more bacterial tyrosine kinases such as Wzc of Escherichia coli (1, 9) and EpsB of Pseudomonas solanacearum (10, 11) were found to possess this conserved property; deletion of such tyrosine kinases will result in the loss of exopolysaccharide production (12). Therefore, several experiments were conducted to investigate the role of the downstream substrates of the tyrosine kinases in different strains of bacteria, and some targeted proteins were found to participate in the exopolysaccharide anabolism (13, 14). These findings demonstrated a direct relationship between bacterial tyrosine phosphorylation and exopolysaccharide biosynthesis that was directly reflected in the strain virulence.In the past, the functional roles of the critical components involved in protein phosphorylation were defined by basic biochemical and genetic approaches (1). However, there exists a salient gap between the growing number of identified protein-tyrosine kinases/phosphatases and the relative paucity of protein substrates characterized to date. Genomic sequence analyses and advanced high resolution/high accuracy MS systems with vastly improved phosphopeptide enrichment strategies are among the two key enabling technologies that allow a high efficiency identification of the scarcely detectable site-specific phosphorylations in bacterial systems (15). Mann et al. (16) were the first to initiate a systematic study of the phosphoproteome of B. subtilis in 2007 followed by similar site-specific phosphoproteomics analyses of E. coli (17), Lactococcus lactis (18), and Halobacterium salinarum (19). These pioneering works have since set the foundation in bacterial phosphoproteomics but have not been specifically carried out to address a particular biological issue of causal relevance to virulence or pathogenesis.Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobic, and rod-shaped bacterium. It is commonly found in water and soil (20) as well as on plants (21) and mucosal surfaces of mammals, such as human, horse, and swine (22, 23). It was demonstrated that CPS on the surface of K. pneumoniae is the prime factor of virulence and toxicity in causing pyogenic liver abscess (PLA), a common intra-abdominal infection with a high 10–30% mortality rate worldwide (2429). There are also variations in virulence in regard to different capsular serotypes; K1 and K2 were found to be especially pathogenic in causing PLA in a mouse model (30) compared with other serotypes, which show little or no effect (3134). The K. pneumoniae NTUH-K2044 (K2044) strain, encapsulated with K1 antigen (35), was isolated from clinical K. pneumoniae liver abscess patients. It has become an important emerging pathogen (36) because it usually complicates metastatic septic endophthalmitis and irreversible central nervous system infections independent of host underlying diseases (30, 34). The transmission rate is high (37), and it often rapidly leads to outbreaks of community-acquired infections, such as bacteremia, nosocomial pneumonia, and sepsis, common in immunocompromised individuals (38).In this study, we wanted to prove that the biosynthesis of CPS is mediated through tyrosine phosphorylation of a subset of proteins. An MS-based systematic phosphoproteomics analysis was conducted on K2044 to identify tyrosine phosphorylated proteins that are also associated with CPS biosynthesis. We further validated the relationship between tyrosine phosphorylation on those proteins and virulence of K2044 by site-directed mutagenesis, CPS quantification, serum killing, and mouse lethality assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号