首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

2.
The siliceous sponge Monorhaphis chuni (Hexactinellida) synthesizes the largest biosilica structures on earth (3 m). Scanning electron microscopy has shown that these spicules are regularly composed of concentrically arranged lamellae (width: 3–10 μm). Between 400 and 600 lamellae have been counted in one giant basal spicule. An axial canal (diameter: ~2 μm) is located in the center of the spicules; it harbors the axial filament and is surrounded by an axial cylinder (100–150 μm) of electron-dense homogeneous silica. During dissolution of the spicules with hydrofluoric acid, the axial filament is first released followed by the release of a proteinaceous tubule. Two major proteins (150 kDa and 35 kDa) have been visualized, together with a 24-kDa protein that cross-reacts with antibodies against silicatein. The spicules are surrounded by a collagen net, and the existence of a hexactinellidan collagen gene has been demonstrated by cloning it from Aphrocallistes vastus. During the axial growth of the spicules, silicatein or the silicatein-related protein is proposed to become associated with the surface of the spicules and to be finally internalized through the apical opening to associate with the axial filament. Based on the data gathered here, we suggest that, in the Hexactinellida, the growth of the spicules is mediated by silicatein or by a silicatein-related protein, with the orientation of biosilica deposition being controlled by lectin and collagen. Carsten Eckert was previously with the Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. The collagen sequence from Aphrocallistes vastus reported here, viz., [COL_APHRO] APHVACOL (accession number AM411124), has been deposited in the EMBL/GenBank data base. This work was supported by grants from the European Commission, the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin), the National Natural Science Foundation of China (grant no. 50402023), and the International Human Frontier Science Program.  相似文献   

3.
The marine sponge Neofibularia irata contains four different categories of siliceous spicules. These spicules are evident in the tissues as distinct bundles that act to increase the structural rigidity of the sponge. All spicules have a normal structural morphology with silica deposition around a hexagonal axial canal containing a crystalline axial filament. The megasclere strongyles are secreted in typical megasclerocytes. The sigma and raphid microscleres are secreted in individual microsclerocytes that are grouped together in parallel to form loose bundles. However, the microxea microscleres are apparently secreted in distinct tight bundles (trichodragmas) within a single cell. These cells, containing between 13 and 39 spicules, are grouped to form large packets of bundles of spicules.  相似文献   

4.
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 microm), (ii) the bulky axial cylinder (radius: <75 microm), and (iii) the central axial canal (diameter: <2 microm) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 microm large holes; the net can be silicified. The silica layers forming the lamellar zone are approximately 5 microm thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission.  相似文献   

5.
The effect of germanium on the secretion of siliceous spicules by the freshwater sponge Spongilla lacustris was investigated by exposing germinating and hatching gemmules to varying concentrations of germanium (Ge) in the presence of silicon (Si). Results were analyzed quantitatively and qualitatively and demonstrate that a [Ge]/[Si] (= molar ratio) of 1.0 completely inhibits silicon deposition. Intermediate ratios (0.5, 0.1, 0.01) which are permissive to spicule appearance result in fewer, shorter, and thinner spicules, in proportionately fewer microscleres, and in short bulbous megascleres. The size of the bulb increases with increasing [Ge]/[Si], while the length of the bulbous megascleres decreases with increasing [Ge]/[Si]. Microscleres do not demonstrate these graded responses suggesting that they are secreted in an all or none manner. Swellings produced in pond water and bulbs produced in germanium appear to decrease in size with time indicating a spreading of the accumulated silica. The effect of germanium on spicule secretion can be partially explained by its ability to uncouple the growth in length of the axial filament from the growth of the surrounding silicalemma. Under these conditions excess silicalemma is produced in which silica accumulates as bulbs in short spicules. Continuous exposure to Ge is necessary to produce this altered morphology. It is conjectured that the bulbs may be retained due to an inhibition of spreading. which in turn may be caused by the incorporation of germanium into the silica.  相似文献   

6.
The siliceous skeleton of demosponges is constructed of spicules. We have studied the formation of spicules in primmorphs from Suberites domuncula. Scanning electron microscopy and transmission electron-microscopical (TEM) analyses have revealed, in the center of the spicules, an axial canal that is 0.3–1.6 m wide and filled with an axial filament. This filament is composed of the enzyme silicatein, which synthesizes the spicules. TEM analysis has shown that spicule formation starts intracellularly and ends extracellularly in the mesohyl. At the initial stage, the axial canal is composed only of silicatein, whereas membranous structures and fibrils (10–15 nm in width) can later also be identified, suggesting that intracellular components protrude into the axial canal. Antibodies against silicatein have been applied for Western blotting; intracellularly, silicatein is processed to the mature form (24 kDa), whereas the pro-enzyme with the propeptide (33 kDa) is detected extracellularly. Silicatein undergoes phosphorylation at five sites. Immunohistological analysis has shown that silicatein exists in the axial canal (axial filament) and on the surface of the spicules, suggesting that they grow by apposition. Finally, we have demonstrated that the enzymic reaction of silicatein is inhibited by anti-silicatein antibodies. These data provide, for the first time, a comprehensive outline of spicule formation.This work was supported by grants from the European Commission (SILIBIOTEC), the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program.  相似文献   

7.
Exceptionally well‐preserved specimens of the reticulosan sponge Cyathophycus loydelli from the Sandbian (Late Ordovician) Llanfawr Mudstones Formation of Llandrindod, Waes, UK, have been examined using scanning electron microscopy (SEM). The specimens include exquisitely detailed pyritized spicules, and granular pyritization of surrounding soft tissues. Spicules frequently show axial canals of diameter similar to those of modern siliceous sponges, with hexagonal symmetry typical of modern demosponges rather than hexactinellids. In one case, the axial filament is also preserved. The largest spicules (ray diameter >20 μm) show a complex structure, with a laminar external region similar to that of the extant hexactinellid Monorhaphis. Some spicules preserve sub‐micron detail of the spicule surface, resembling the reticulate collagenous sheath of Monorhaphis. The hexagonal symmetry of the canal confirms that at least some Reticulosa are not crown‐group hexactinellids, but stem‐group Hexactinellida or Demospongea, or stem‐group Silicea. This suggests that a square canal is a sufficient diagnostic feature of total‐group Hexactinellida, but that hexagonal canals were more widely distributed among Early Silicea and were probably not restricted to demosponges. Alternatively, comparison with the structure of modern verongiid fibres suggests that these may be homologous with the outer layers of Cyathophycus spicules, and Cyathophycus may instead be a stem‐group demosponge. The preserved detail of the surface layer shows that pyritization can preserve certain material with extraordinarily fine resolution.  相似文献   

8.
In some sponges peculiar proteins called silicateins catalyze silica polymerization in ordered structures, and their study is of high interest for possible biotechnological applications in the nanostructure industry. In this work we describe the isolation and the molecular characterization of silicatein from spicules of Petrosia ficiformis, a common Mediterranean sponge, and the development of a cellular model (primmorphs) suitable for in vitro studies of silicatein gene regulation. The spicule of P. ficiformis contains an axial filament composed of 2 insoluble proteins, of 30 and 23 kDa. The 23-kDa protein was characterized, and the full-length cDNA was cloned. The putative amino acid sequence has high homology with previously described silicateins from other sponge species and also is very similar to cathepsins, a cystein protease family. Finally, P. ficiformis primmorphs express the silicatein gene, suggesting that they should be a good model for biosilicification studies.  相似文献   

9.
The skeletal elements (spicules) of the demosponge Lubomirskia baicalensis were analyzed; they are composed of amorphous, non-crystalline silica, and contain in a central axial canal the axial filament which consists of the enzyme silicatein. The axial filament, that orients the spicule in its longitudinal axis exists also in the center of the spines which decorate the spicule. During growth of the sponge, new serially arranged modules which are formed from longitudinally arranged spicule bundles are added at the tip of the branches. X-ray analysis revealed that these serial modules are separated from each other by septate zones (annuli). We describe that the longitudinal bundles of spicules of a new module originate from the apex of the earlier module from where they protrude. A cross section through the oscular/apical-basal axis shows that the bundle rays are organized in a concentric and radiate pattern. High resolution magnetic resonance microimaging studies showed that the silica spheres of the spicules in the cone region contain high amounts of 'mobile' water. We conclude that the radiate accretive growth pattern of sponges is initiated in the apical region (cones) by newly growing spicules which are characterized by high amounts of 'mobile' water; subsequently spicule bundles are formed laterally around the cones.  相似文献   

10.
Attempts to understand the intricacies of biosilicification in sponges are hampered by difficulties in isolating and culturing their sclerocytes, which are specialized cells that wander at low density within the sponge body, and which are considered as being solely responsible for the secretion of siliceous skeletal structures (spicules). By investigating the homosclerophorid Corticium candelabrum, traditionally included in the class Demospongiae, we show that two abundant cell types of the epithelia (pinacocytes), in addition to sclerocytes, contain spicules intracellularly. The small size of these intracellular spicules, together with the ultrastructure of their silica layers, indicates that their silicification is unfinished and supports the idea that they are produced "in situ" by the epithelial cells rather than being incorporated from the intercellular mesohyl. The origin of small spicules that also occur (though rarely) within the nucleus of sclerocytes and the cytoplasm of choanocytes is more uncertain. Not only the location, but also the structure of spicules are unconventional in this sponge. Cross-sectioned spicules show a subcircular axial filament externally enveloped by a silica layer, followed by two concentric extra-axial organic layers, each being in turn surrounded by a silica ring. We interpret this structural pattern as the result of a distinctive three-step process, consisting of an initial (axial) silicification wave around the axial filament and two subsequent (extra-axial) silicification waves. These findings indicate that the cellular mechanisms of spicule production vary across sponges and reveal the need for a careful re-examination of the hitherto monophyletic state attributed to biosilicification within the phylum Porifera.  相似文献   

11.
The new calcisponges Regispongia fluegeli n. sp., and Iranospongia circulara n. gen. n. sp., are described from central Iran. These are the first heteractinid sponges reported from the Permian of the region. These wewokellid sponges are large, irregularly cylindrical forms with a distinct axial spongocoel. The calcareous spicular skeletons of both taxa have been overgrown and are recrystallized. However, the preserved skeleton of Regispongia fluegeli does include large polyactines in the main endosomal layer and small octactines and possibly other polyactine spicules in both the relatively massive dermal layer and the distinct, delicately spiculed, gastral layer. Iranospongia is characterized by a discontinuous ring of vertical exhalant canals interior to the dense dermal layer, and by an interior skeleton net that includes common coarse vertical fibers. Individual spicules in Iranospongia are commonly obscured, but locally some remnants of possible polyactines occur in outer parts of the skeleton.  相似文献   

12.
Sponges (phylum Porifera) of the classes Hexactinellida and Demospongiae possess a skeleton composed of siliceous spicules, which are synthesized enzymatically. The longest spicules are found among the Hexactinellida, with the stalk spicules (length: 30 cm; diameter: 300 microm) of Hyalonema sieboldi as prominent examples. These spicules are constructed around a central axial filament, which is formed by approximately 40 siliceous layers. The stratified spicules function as optical glass fibers with unique properties. If free-spaced coupled with a white light source (WLS), the entire fiber is illuminated. Special features of the light transmission: (i) only wavelengths between 615 and 1310 nm can pass through the fibers and (ii) light below wavelengths of 615 nm and above 1310 nm is completely cut-off. The transmission efficiency is around 60% (measured at 1080-1100 nm [length of the fiber: 5 cm]). The spicules acts as sharp high- and low-pass filters, suggesting that these silica-based fibers might be involved in a photoreception system. This assumption is supported by the finding that sponges are provided with a bioluminescent system. It is hypothesized that the spicules/siliceous fibers might be involved in a photoreception system in these animals.  相似文献   

13.
14.
Lake Baikal harbors the largest diversity of sponge species [phylum Porifera] among all freshwater biotopes. The abundantly occurring species Lubomirskia baicalensis was used to study the seasonal silicatein metabolism; the spicules of this species have an unusually thick axial filament, consisting of silicatein, which remains constant in diameter during their growth. In the course of maturation, the size of the silicic acid shell grows, until the final diameter of the spicules of about 8 microm is reached. The seasonal content of silicatein was assessed by use of antibodies raised against silicatein; they stained specifically the axial filaments. In addition we determined, by application of the enzyme-linked immunosorbent assay system, that the proteinaceous content of the spicules, the silicatein, increases from spring to late summer by 8-fold. As molecular markers to quantify the seasonal changes in expression levels of genes coding for proteins/enzymes, the genes for the calumenin-like protein and the kinesin-related protein, were selected. The expression of calumenin-like gene, involved in the intracellular signaling, is highest during September, whereas the expression of the kinesin-related protein does not change during the annual course. These results suggest that the highest metabolic activity of L. baicalensis occurs in late summer (September), in parallel with the highest accumulation of silicatein, a structural protein/enzyme of the spicules.  相似文献   

15.
深海六放海绵大骨针的结构与特性   总被引:4,自引:0,他引:4  
在海绵动物(多孔动物)中,六放海绵和寻常海绵为硅质骨骼.生活在深海(1 000 m)中的六放海绵是最古老的海绵动物,其中间单根海绵和春氏单根海绵有长达3 m的骨针,是地球上最长的生物硅结构.利用电子显微技术观测, 这些直径达8 mm的巨大根须骨针具有同心层状结构,其横截面显示明显的构造分界:中间为含有轴丝的轴管,外围是一50-150 μm厚的轴筒,最外面为区状区(300-500层,每层厚度3-5 μm).生物化学研究显示其主要的蛋白质为35 kD大分子,另外,还检测到23-24 kD 多肽,可能是硅蛋白相关蛋白.依据现有的红血球凝聚活性,从骨针提取物中也检测到了凝集素.由电子探针获得其化学成分主要为Si,K和Na.此外,骨针的光传输实验表明,该巨大根须骨针用作光纤可传输600 nm至1 400 nm范围的光,而滤掉小于600 nm的光(类似高通滤波器)和大于1 400 nm 的红外光(类似低通滤波器).另外,从六放海绵的空囊泡沫海绵中分离出一个基因并确证了其推导的编码蛋白序列,该蛋白编码一个光裂合酶相关蛋白,蛋白相似性比较结果显示属于光裂合酶相关蛋白中多细胞动物隐色素一类.基于以上数据给出了六放海绵硅质骨针形成的示意图.另外,由单根海绵骨针可作为波导传输光/电和/或化学信号,推断在海绵动物中有类似神经系统的网络系统[动物学报 53(3):557-569,2007].  相似文献   

16.
This paper records the first example of a demosponge spicule framework in a single specimen of a Devonian stromatoporoid from the Frasnian of southern Belgium. The small sample (2.5 × 2 cm) is a component in a brecciated carbonate from a carbonate mound in La Boverie Quarry 30 km east of Dinant. Because of the small size of the sample, generic identification is not confirmed, but the stromatoporoid basal skeleton is similar to the genus Stromatopora. The spicules are arranged in the calcified skeleton, but not in the gallery space, and are recrystallized as multi‐crystalline calcite. The spicules fall into two size ranges: 10–20 μm diameter and 500–2000 μm long for the large ones and between 5–15 μm diameter and 50–100 μm length for the small ones. In tangential section, the spicules are circular, they have a simple structure, and no axial canal has been preserved. The large spicules are always monaxons, straight or slightly curved styles or strongyles. The spicules most closely resemble halichondrid/axinellid demosponge spicules and are important rare evidence of the existence of spicules in Palaeozoic stromatoporoids, reinforcing the interpretation that stromatoporoids were sponges. The basal skeleton may have had an aragonitic spherulitic mineralogy. Furthermore, the spicules indicate that this stromatoporoid sample is a demosponge.  相似文献   

17.
Silica deposition in Demosponges: spiculogenesis in Crambe crambe   总被引:1,自引:0,他引:1  
Transmission electron-microscopy images coupled with dispersive X-ray analysis of the species Crambe crambe have provided information on the process of silica deposition in Demosponges. Sclerocytes (megasclerocytes) lie close to spicules or surround them at different stages of growth by means of long thin enveloping pseudopodia. Axial filaments occur free in the mesohyl, in close contact with sclerocytes, and are triangular in cross section, with an internal silicified core. The unit-type membrane surrounding the growing spicule coalesces with the plasmalemma. The axial filament of a growing spicule and that of a mature spicule contain 50%-70% Si and 30%-40% Si relative to that contained in the spicule wall, respectively. The extracellular space between the sclerocyte and the growing spicule contains 50%-65%. Mitochondria, vesicles and dense inclusions of sclerocytes exhibit less than 10%. The cytoplasm close to the growing spicule and that far from the growing spicule contain up to 50% and less than 10%, respectively. No Si has been detected in other parts of the sponge. The megascleres are formed extracellularly. Once the axial filament is extruded to the mesohyl, silicification is accomplished in an extracellular space formed by the enveloping pseudopodia of the sclerocyte. Si deposition starts at regularly distributed sites along the axial filament; this may be related to the highly hydroxylated zones of the silicatein-alpha protein. Si is concentrated in the cytoplasm of the sclerocyte close to the plasmalemma that surrounds the growing spicules. Orthosilicic acid seems to be pumped, both from the mesohyl to the sclerocyte and from the sclerocyte to the extracellular pocket containing the growing spicule, via the plasmalemma.  相似文献   

18.
Recently it has been discovered that the formation of the siliceous spicules of Demospongiae proceeds enzymatically (via silicatein) and occurs matrix guided (on galectin strings). In addition, it could be demonstrated that silicatein, if immobilized onto inorganic surfaces, provides the template for the synthesis of biosilica. In order to understand the formation of spicules in the intact organism, detailed studies with primmorphs from Suberites domuncula have been performed. The demosponge spicules are formed from several silica lamellae which are concentrically arranged around the axial canal, harboring the axial filament composed of silicatein. Now we show that the appositional growth of the spicules in radial and longitudinal direction proceeds in the extracellular space along hollow cylinders; their surfaces are formed by silicatein. The extracellularly located spicules are surrounded by sclerocytes which are filled with both electron-dense and electron-poor vesicles; energy dispersive X-ray analysis/scanning electron microscopical studies revealed that the electron-dense vesicles are filled of silicon/silica and therefore termed silicasomes. The release of the content of the silicasomes into the hollow cylinder suggests that the newly formed silica lamella originate there; in addition the data are compatible with the view that the silicatein molecules, attached at the centripetal and centrifugal surfaces, mediate biosilica formation. In a chemical/biomimetical approach silicatein is linked onto the organic material-free spicules after their functionalization with aminopropyltriethoxysilane [amino groups]-poly(acetoxime methacrylate) [reactive ester polymer]-N(epsilon)-benzyloxycarbonyl L-lysine tert-butyl ester-Ni(II); finally His-tagged silicatein is immobilized. The matrix-bound enzyme synthesized a new biosilica lamella. These bioinspired findings are considered as the basis for a technical use/application/utilization of hollow cylinders formed by matrix-guided silicatein molecules for the biocatalytic synthesis of nanostructured tubes.  相似文献   

19.
The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly and they are subsequently extruded to the extracellular space. In contrast to the composition of the silicateins in the megascleres (isoforms: -alpha, -beta and -gamma), the axial filaments of the microscleres contain only one form of silicatein, termed silicatein-alpha/beta, with a size of 25kDa. Silicatein-alpha/beta undergoes three phosphorylation steps. The gene encoding silicatein-alpha/beta was identified and found to comprise the same characteristic sites, described previously for silicateins-alpha or -beta. It is hypothesized, that the different composition of the axial filaments, with respect to silicateins, contributes to the morphology of the different types of spicules.  相似文献   

20.
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS–PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30–60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号