首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
用几种氢过电位较高的金属Sn、Bi、NiZn以及Cu修饰铅电极,用于电解合成L-半胱氨酸的反应,首先筛选出性能较好的Sn、Ni、Zn电极,然后对该三种金属的合金进行研究,筛选出性能优越的(Ni-Sn)/Pb电极,电极活性大为提高,反应同期转化率明显提高。  相似文献   

2.
研究了微水-有机溶剂两相体系中固定化脂肪酶催化的萘甲酯的立体选择性水解反应,固定化酶活性受载体极性、水含量、有机溶剂的logP值,产物抑制的影响,据此构建了一种可以连续拆分产生(S)-(+)-萘普生的微水-有机溶剂两相体系。反应在一个具有回路的连续流搅拌反应器中进行,反应器中添加有采用吸附法固定化的脂肪酶,截体为一种弱极性的合成载体,水相连同固定化酶颗粒一起永久保持在反应器中,有机流动相带入底物,  相似文献   

3.
细菌膜电极     
近二十年来,对具有高选择性的酶反应与灵敏的电化学探测元件相结合的酶电极在生物医学等领域内进行了广泛的研究。从1977年Rechitz等提出用微生物细胞制成相应的电极,可减少酶的分离、提纯手续,延长了使用寿命之后,细菌膜电极(或称微生物传感器)的研制进入了新的阶段。本文拟就其原理、方法与应用作一综述。  相似文献   

4.
在平均参考和无穷远点参考情况下,对左右视野空间选择性注意的ERP反应进行了研究。其中无穷远点参考是通过一种基于等效分布源理论建立的参考电极校正技术处理后得到的。结果表明,两种参考电极一致地在选择性注意中P1,N1的相对增强反应,但也略有差异,其中以无穷远点为参考的结果中,PI的相对增强更加明显,P2能较好地同时出现在注意与非注意两种条件下。  相似文献   

5.
立体选择性酰胺酶是一种重要的手性合成工具酶,在制备手性羧酸及其衍生物方面具有广阔的应用前景,日益受到重视。在酰胺酶的应用中,其立体选择性影响巨大。从底物、反应温度、pH、添加共溶剂和微生物来源5个方面综述了其对酰胺酶立体选择性的影响,对提高酰胺酶的立体选择性,扩大其在制备光学活性化合物领域的应用具有重要的意义。  相似文献   

6.
自然老化和人工老化杂交油菜种子的发芽率和活力均较低,但经水合脱水处理后,则有明显提高;且种子浸出液的电导率、糖分浸出量和脂肪酶活性均明显降低;而脱氢酶活性有所提高,种子类脂过氧化反应明显减轻。水合脱水处理中以水分平衡-浸泡-脱水处理的效果最好。  相似文献   

7.
微环境对脂肪酶催化酮基布洛芬立体选择性酯化的影响*   总被引:2,自引:0,他引:2  
杜伟  宗敏华  杨蓉  李琼  郭勇   《微生物学通报》2000,27(5):353-356
系统研究了反应介质、助溶剂、水活度、温度、pH等因素对脂肪酶Novozym 435催化酮基布洛芬动力学拆分的影响。以环己烷为反应介质,酶表现出较高的催化活性和对映体选择性;在环己烷中添加苯,可大幅度提高E值;适宜的反应温度为30℃;最适反应初始水活度为0.09;在所研究的pH6~8范围内,pH对酶活及酶的体选择性影响不大。  相似文献   

8.
磷酸化肽段的高效富集是磷酸化蛋白质组学中的重要任务,通过综述纳米金属氧化物在磷酸化蛋白组学中的应用,了解磷酸化蛋白组学研究中常用的磷酸化肽段富集材料和方法.该文介绍纳米金属氧化物、核壳结构纳米磁性材料以及金属离子在磷酸化蛋白组学中的富集效果.纳米金属氧化物材料由于其特殊理化性质在富集磷酸化肽段研究中具有特异性强、选择性好特点,在磷酸化蛋白组学研究中得到了广泛应用.虽然纳米金属氧化物在磷酸化蛋白组学的研究中仍然处于起步阶段,可重复性和全面富集仍面临挑战,但是在未来的亚细胞蛋白组学和功能蛋白组学研究中,纳米金属氧化物及其衍生物仍然会起着重要作用.  相似文献   

9.
谷氨酸氧化酶电极的研究   总被引:2,自引:1,他引:1  
用戊二醛作交联剂将谷氨酸氧化酶和牛血清白蛋白共交联,置于内层醋酸纤维素抗干扰膜和外层聚碳酸酯扩散控制膜之间,制成酶膜,将其与过氧化氢探头复合制成了扩散控制型谷氨酸氧化酶电极,并构建了采用该电极的流动注射分析芽纺。酶电极红性范围0—1000mg/L。50s响应电流达稳态值的95%。流动注射分析系统响应时间20s,检测速度60次/h,线性范围5—8 000mg,L,酶膜使用寿命两周以上。系统选择性好,仅对干扰物L-谷氨酰胺和L-天冬氨酸有微弱响应。对同一样品连续测定41次的变异系数2.8%。测量味精发酵液和瓦勃呼吸计的结果相吻合。可望应用于味精发酵及食品工业中。  相似文献   

10.
利用脂肪酶YCJ01催化拆分对位取代α-苯乙醇衍生物。以异丙醚为反应介质,采用乙酸乙烯酯作为酰基供体,对180 mmol/L的1-(4-甲基苯基)乙醇进行选择性酯化,脂肪酶粗酶粉添加量为5 g/L,50℃反应21 h后,底物转化率可达49.96%,对映体过量值e.e.s、e.e.p值分别为97.1%和97.2%,对映体选择性E200;同样,对1-(4-甲氧基苯基)乙醇进行选择性酯化,酰基供体为丁酸乙烯酯,底物浓度150 mmol/L,脂肪酶粗酶粉添加量为2.5g/L,30℃反应12 h后,底物转化率为49.8%,e.e.s、e.e.p值分别为97.7%和98.4%,对映体选择性E200,显示了很好的手性拆分效果。  相似文献   

11.
Platinum electrodes can be coated with cytochrome b5-phospholipid monolayers by the Langmuir-Blodgett technique. Cyclic voltammetry of a series of dyes shows that the coated electrodes become selective for certain electroactive species. The electron transfer reactions of negatively charged species are inhibited at the modified electrode, whereas positively charged species show enhanced reactivity compared with that at a bare metal electrode.  相似文献   

12.
The direct electrocatalytic oxidation of glucose in alkaline medium at nanoscale nickel hydroxide modified carbon ionic liquid electrode (CILE) has been investigated. Enzyme free electro-oxidation of glucose have greatly been enhanced at nanoscale Ni(OH)(2) as a result of electrocatalytic effect of Ni(+2)/Ni(+3) redox couple. The sensitivity to glucose was evaluated as 202 microA mM(-1)cm(-2). From 50 microM to 23 mM of glucose can be selectively measured using platelet-like Ni(OH)(2) nanoscale modified CILE with a detection limit of 6 microM (S/N=3). The nanoscale nickel hydroxide modified electrode is relatively insensitive to electroactive interfering species such as ascorbic acid (AA), and uric acid (UA) which are commonly found in blood samples. Long-term stability, high sensitivity and selectivity as well as good reproducibility and high resistivity towards electrode fouling resulted in an ideal inexpensive amperometric glucose biosensor applicable for complex matrices.  相似文献   

13.
A simple and feasible electrochemical sensing protocol was developed for the detection of bisphenol A (BPA) by employing the gold nanoparticles (AuNPs), prussian blue (PB) and functionalized carbon nanotubes (AuNPs/PB/CNTs-COOH). An aminated complementary DNA as a capture probe and specific aptamer against BPA as a detection probe was immobilized on the surface of a modified glassy carbon (GC) electrode via the formation of covalent amide bond and hybridization, respectively. The proposed nanoaptasensor combined the advantages of the in situ formation of PB as a label, the deposition of neatly arranged AuNPs, and the covalent attachment of the capture probe to the surface of the modified electrode. Upon addition of target BPA, the analyte reacted with the aptamer and caused the steric/conformational restrictions on the sensing interface. The formation of BPA–aptamer complex at the electrode surface retarded the interfacial electron transfer reaction of the PB as a probe. Sensitive quantitative detection of BPA was carried out based on the variation of electron transfer resistance which relevant to the formation of BPA– aptamer complex at the modified electrode surface. Under the optimized conditions, the proposed aptasensor exhibited a high sensitivity, wide linearity to BPA and low detection limit. This aptasensor also displayed a satisfying electrochemical performance with good stability, selectivity and reproducibility.  相似文献   

14.
A novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)–functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM). Based on ECL experimental results, the PdNPs–FCNTs–Nafion film modified electrode displayed high electrocatalytic activity towards the oxidation of glucose. The free radicals generated by the glucose oxidation reacted with the luminol anion (LH), and enhanced the ECL signal. Under the optimized conditions, the linear response of ECL intensity to glucose concentration was valid in the range from 0.5 to 40 μmol L−1 (r2 = 0.9974) with a detection limit (S/N = 3) of 0.09 μmol L−1. In addition, the modified electrode presented high resistance towards the poisoning of chloride ion, high selectivity and long-term stability. In order to verify the sensor reliability, it was applied to the determination of glucose in glucose injection samples. The results indicated that the proposed approach provided a highly sensitive, more facile method with good reproducibility for glucose determination, promising the development of a non-enzymatic ECL glucose sensor.  相似文献   

15.
Qiu S  Gao S  Liu Q  Lin Z  Qiu B  Chen G 《Biosensors & bioelectronics》2011,26(11):4326-4330
Copper(I) species can be acquired from the reduction of copper(II) by ascorbic acid (AA) in situ, and which in turn quantitative catalyze the azides and alkynes cycloaddition reaction. In this study, propargyl-functionalized ferrocene (propargyl-functionalized Fc) has been modified on the electrode through reacting with azide terminal modified Au electrode via copper(I) catalyzed azides and alkynes cycloaddition (CuAAC) reaction. The electrochemical impedance spectroscopy (EIS) measurement has been applied to test the electron transfer resistance of the Au electrode before and after click reaction. The changes of the fractional surface coverage (θ) with different AA concentrations are characterized. It is found that the θ value has a linear response to the logarithm of AA concentration in the range of 5.0 pmol/L to 1.0 nmol/L with the detection limits of 2.6 pmol/L. The sensor shows a good stability and selectivity. And it has been successfully applied to the AA detection in the real samples (urine) with satisfactory results.  相似文献   

16.
Lead sulfide (PbS) nanoparticles were synthesized in aqueous solution and used as oligonucleotide labels for electrochemical detection of the 35 S promoter from cauliflower mosaic virus (CaMV) sequence. The PbS nanoparticles were modified with mercaptoacetic acid and could easily be linked with CaMV 35 S oligonucleotide probe. Target DNA sequences were covalently linked on a mercaptoacetic acid self-assembled gold electrode, and DNA hybridization of target DNA with probe DNA was completed on the electrode surface. PbS nanoparticles anchored on the hybrids were dissolved in the solution by oxidation of HNO3 and detected using a sensitive differential pulse anodic stripping voltammetric method. The detection results can be used to monitor the hybridization reaction. The CaMV 35 S target sequence was satisfactorily detected with the detection limit as 4.38 × 10−12 mol/L (3σ). The established method extends nanoparticle-labeled electrochemical DNA analysis to specific sequences from genetically modified organisms with higher sensitivity and selectivity.  相似文献   

17.
Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.  相似文献   

18.
Herein, we reported for the first time one step procedure for the preparation of cytochrome c (cyt c)-poly (5-amino-2-napthalenesulfonic acid) (PANS) modified glassy carbon electrode by cyclic voltammetrically (CV). Hereafter, we called the above modified electrode as cyt c-PANS electrode. The presence of cyt c on modified electrode was investigated with electrochemical quartz crystal microbalance (EQCM), CV, and superoxide radicals reaction studies. The reaction between cyt c in the modified electrode and superoxide radicals in solution, was exemplified by cyclic voltammetric measurements. Surface morphology of the modified electrode was investigated by using atomic force microscopy (AFM). The modified electrode showed a pair of well defined redox peak in PBS solution, pH 6.7. The modified electrode utilized for electrocatalytic reduction as well as amperometric determination of hydrogen peroxide (H(2)O(2)). The detection limit and linear range for H(2)O(2) were 5 and 50 microM to 7 mM, respectively.  相似文献   

19.
A novel non-enzyme glucose amperometric biosensor was fabricated based on biospecific binding affinity of concanavalin A (Con A) for D-glucose on thionine (TH) modified electrode. TH can be covalently immobilized on potentiostatically activated glassy carbon electrode through Schiff-base reaction. Subsequently, the surface-adherent polydopamine film formed by self-polymerization of dopamine attached to TH and afforded binding sites for the subsequent immobilization of Con A molecules via Michael addition and/or Schiff-base reaction with high stability. Thus, a sensing platform for specific detection towards D-glucose was established. The binding of Con A towards D-glucose can be monitored through the decrease of the electrode response of the TH moiety. Due to the high affinity of Con A for D-glucose and high stability of the resulting sensing platform, the fabricated biosensor exhibited high selectivity, good sensitivity, and wide linear range from 1.0×10(-6) to 1.0×10(-4) M with a low detection limit of 7.5×10(-7) M towards D-glucose.  相似文献   

20.
This article reports a simple electrochemical approach for the detection of multiple proteins (thrombin and lysozyme) using Dabcyl-labeled aptamer modified metal nanoparticles (DLAPs). DLAPs were immobilized on β-cyclodextrins (β-CDs) modified electrode by means of host–guest self-assembly. During the time of detection, the aptamers' structure will change due to the specific binding with corresponding proteins that forced DLAPs far away from the electrode that had been modified by β-CDs. Thus, the capture of target proteins onto DLAPs was translated via the electrochemical current signal offered by metal nanoparticles. Linearity of the aptasensor for quantitative measurements was demonstrated. Determinations of proteins in human real serum samples were also performed to demonstrate detection in real clinical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号