首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteomic analysis of plasma samples represents a challenge as a result of the presence of highly abundant proteins such as albumin. To enable the detection of biomarkers, which are commonly low-abundance proteins, in complex blood fluids, it is necessary to remove high-abundance proteins efficiently. Moreover, there is a range of about 10 orders of magnitude for the abundance of different protein species in serum. Here, we describe for the first time a study of reptilian albumin depletion using resins usually used in mammalian plasma depletion procedures. We performed the depletion of albumin from Bothrops jaraca plasma using the HiTrap Blue high-performance column (GE Healthcare Life Sciences, Piscataway, NJ, USA) and the kit Albumin & IgG Depletion SpinTrap column (GE Healthcare Life Sciences). In addition, proteomic approaches were used to analyze reptilian plasma. Our results showed that B. jararaca albumin bound to both columns, but those interactions were not enough to remove a large amount of albumin to reach an enrichment of low-abundance proteins. Although the depletion techniques used in this work were not the best to remove B. jararaca plasma albumin, our present work highlights the similarity between B. jararaca and mammalian albumin, contributing to the knowledge of comparative hemostatic proteins.  相似文献   

2.
Plasma from different species is the most accessible and valuable source for biomarker discovery in clinical and animal samples. However, due to the high abundance of some proteins such as albumin and immunoglobulins, low-abundant proteins are often undetectable in proteomic analysis of plasma. We have established a plasma depletion scheme using chicken antibodies against various abundant proteins. This immunoaffinity purification procedure is able to deplete albumin across multiple species. The high binding capacity and specificity of the chicken antibody enables the efficient capture of its ligand from microliter volumes of plasma sample. The resulting two-dimensional gel analyses of the depleted and captured samples show significant enhancement of the low-abundant proteins and specific capture of the abundant ligand. By utilizing this sample preparation scheme, it is now possible to analyze the plasma proteome from multiple species in a potentially rapid and large-scale capacity for biomarker discovery, drug target discovery, and toxicology studies.  相似文献   

3.
Gong Y  Li X  Yang B  Ying W  Li D  Zhang Y  Dai S  Cai Y  Wang J  He F  Qian X 《Journal of proteome research》2006,5(6):1379-1387
Plasma proteins may often serve as indicators of disease and are a rich source for biomarker discovery. However, the intrinsic large dynamic range of plasma proteins makes the analysis very challenging because a large number of low abundance proteins are often masked by a few high abundance proteins. The use of prefractionation methods, such as depletion of higher abundance proteins before protein profiling, can assist in the discovery and detection of less abundant proteins that may ultimately prove to be informative biomarkers. But there are few studies on comprehensive investigation of the proteins both in the fractions depleted and remainder. In the present study, two different immunoaffinity fractionation columns for the top-6 or the top-12 proteins in plasma were investigated and both the proteins in column-bound and flow-through fractions were subsequently analyzed. A two-dimensional peptide separation strategy, utilizing chromatographic separation techniques, combined with tandem mass spectrometry (MS/MS) was employed for proteomic analysis of the four fractions. Using the established HUPO PPP criteria, a total of 2401 unique plasma proteins were identified. The Multiple Affinity Removal System yielded 921 and 725 unique proteins from the flow-through and bound fractions, respectively, whereas the Seppro MIXED 12 column yielded identification of 897 and 730 unique proteins from the flow-through and bound fractions, respectively. When more stringent criteria, based on searching against the reversed database, were implemented, 529 unique proteins were identified from the four fractions with the confidence in peptide identification increased from 73.6% to 99%. To determine whether the presence of nontarget proteins in the immunoaffinity-bound fraction could be attributed to their interaction with high abundance proteins, co-immunoprecipitation analysis with an antibody to human plasma albumin was performed, which resulted in an identification of 40 unique proteins from the coimmunoprecipitate with the more stringent criteria. This study illustrated that combining the column-bound and flow-through fractions from immunoaffinity separation affords more extensive profiling of the protein content of human plasma. The presence of nontarget proteins in the column-bound fractions may be induced by their binding to the higher abundance proteins targeted by the immunoaffinity column.  相似文献   

4.
Strategies for removal of high abundance proteins have been increasingly utilized in proteomic studies of serum/plasma and other body fluids to enhance the detection of low abundance proteins and achieve broader proteome coverage; however, both the reproducibility and specificity of the high abundance protein depletion process still represent common concerns. Here we report a detailed evaluation of immunoaffinity subtraction performed applying the ProteomeLab IgY-12 system that is commonly used in human serum/plasma proteome characterization in combination with high resolution LC-MS/MS. Plasma samples were repeatedly processed using this approach, and the resulting flow-through fractions and bound fractions were individually analyzed for comparison. The removal of target proteins by the immunoaffinity subtraction system and the overall process was highly reproducible. Non-target proteins, including one spiked protein standard (rabbit glyceraldehyde-3-phosphate dehydrogenase), were also observed to bind to the column at different levels but also in a reproducible manner. The results suggest that multiprotein immunoaffinity subtraction systems can be readily integrated into quantitative strategies to enhance detection of low abundance proteins in biomarker discovery studies.  相似文献   

5.
In clinical and pharmaceutical proteomics, serum and plasma are frequently used for detection of early diagnostic biomarkers for therapeutic targets. Although obtaining these body fluid samples is non-invasive and easy, they contain some abundant proteins that mask other protein components present at low concentrations. The challenge in identifying serum biomarkers is to remove the abundant proteins, uncovering and enriching at the same time the low-abundance ones. The depletion strategies, however, could lead to the concomitant removal of some non-targeted proteins that may be of potential interest. In this study, we compared three different methods aimed to deplete high-abundance proteins from human serum, focusing on the identification of non-specifically bound proteins which might be eventually removed. A Cibacron blue-dye-based method for albumin removal, an albumin and IgG immunodepletion method and an immunoaffinity column (Multiple Affinity Removal System) that simultaneously removes a total of six high-abundance proteins, were investigated. The bound proteins were eluted, separated by two-dimensional gel electrophoresis and identified by Nano LC-CHIP-MS system. Flow-through fractions and bound fractions were also analysed with the ProteinChip technology SELDI-TOF-MS. Our results showed that the methods tested removed not only the targeted proteins with high efficiency, but also some non-targeted proteins. We found that the Multiple Affinity Removal Column improved the intensity of low-abundance proteins, displayed new protein spots and increased resolution. Notably, the column showed the lowest removal of untargeted proteins, proved to be the most promising depletion approach and a reliable method for serum preparation prior to proteomic studies.  相似文献   

6.
In order to discover novel protein markers indicative of disease processes or drug effects, the proteomics technology platform most commonly used consists of high resolution protein separation by two-dimensional electrophoresis (2-DE), mass spectrometric identification of proteins from stained gel spots and a bioinformatic data analysis process supported by statistics. This approach has been more successful in profiling proteins and their disease- or treatment-related quantitative changes in tissue homogenates than in plasma samples. Plasma protein display and quantitation suffer from several disadvantages: very high abundance of a few proteins; high heterogeneity of many proteins resulting in long charge trains; crowding of 2-DE separated protein spots in the molecular mass range between 45-80 kD and in the isoelectric point range between 4.5 and 6. Therefore, proteomic technologies are needed that address these problems and particularly allow accurate quantitation of a larger number of less abundant proteins in plasma and other body fluids. The immunoaffinity-based protein subtraction chromatography (IASC) described here removes multiple proteins present in plasma and serum in high concentrations effectively and reproducibly. Applying IASC as an upfront plasma sample preparation process for 2-DE, the protein spot pattern observed in gels changes dramatically and at least 350 additional lower abundance proteins are visualized. Affinity-purified polyclonal antibodies (pAbs) are the immunoaffinity reagents used to specifically remove the abundant proteins such as albumin, immunoglobulin G, immunoglobulin A, transferrin, haptoglobin, alpha-1-antitrypsin, hemopexin, transthyretin, alpha-2-HS glycoprotein, alpha-1-acid glycoprotein, alpha-2-macroglobulin and fibrinogen from human plasma samples. To render the immunoaffinity subtraction procedure recyclable, the pAbs are immobilized and cross-linked on chromatographic matrices. Antibody-coupled matrices specific for one protein each can be pooled to form mixed-bed IASC columns. We show that up to ten affinity-bound plasma proteins with similar solubility characteristics are eluted from a mixed-bed column in one step. This facilitates automated chromatographic processing of plasma samples in high throughput, which is desirable in proteomic disease marker discovery projects.  相似文献   

7.
Immunodepletion of high-abundance proteins from serum is a widely used initial step in biomarker discovery studies. In the present work we have investigated the reproducibility of the depletion step by comparing 250 serum samples from prostate cancer patients. All samples were depleted on a single immunoaffinity column over a time period of 6 weeks with automated peak detection and fraction collection. Reproducibility in terms of surface area of the depleted serum protein peak at 280nm was below 7% relative standard deviation (R.S.D.) and the collected volume of the relevant fraction was 0.97mL (4.5% R.S.D.). Proteins in the depleted serum fraction were subsequently digested with trypsin and analyzed by MALDI-FT-MS. The degree of the depletion of albumin, transferrin and alpha-1-antitrypsin was determined by comparing the intensity of peptide peaks before and after depletion of 11 samples taken at regular time intervals from amongst the 250 depleted, randomized samples. As a positive control we evaluated peaks of apolipoprotein A1 (the most abundant serum protein remaining after depleteion) showing a clear increase in intensity of these peaks in the depleted samples. From this study we conclude that the depletion of the 250 serum samples was complete and reproducible over a period of 6 weeks.  相似文献   

8.
Serum proteins may often serve as indicators of disease and is a rich source for biomarker discovery. However, the large dynamic range of proteins in serum makes the analysis very challenging because high-abundant proteins tend to mask those of lower abundance. A prefractionation step, such as depletion of a few high-abundant proteins before protein profiling, can assist in the discovery and detection of less abundant proteins that may prove to be informative biomarkers. In the present study, five different depletion columns were investigated considering efficiency, specificity, and reproducibility. Our research included quantitative determination of total protein, albumin, and immunoglobulin G (IgG) concentrations, one- and two-dimensional gels and mass spectrometric analysis of the serum samples before and after the depletion step. Our results showed that all five depletion columns tested removed albumin and IgG with high efficiency. We found that based on reproducibility and binding specificity, the Multiple Affinity Removal Column that removed a total of six high-abundant proteins (albumin, IgG, antitrypsin, IgA, transferring, and haptoglobin) offered the most promising depletion approach. Among the disposable (single-use) products, the ProteoExtract Albumin/IgG Removal kit displayed the best results. Depleted serum from the Multiple Affinity Removal column was further evaluated by 2-D gel electrophoresis (2-DE) analysis, and the results indicated increased resolution and improved intensity of low-abundant proteins in a reproducible fashion. Our study provides a comprehensive investigation of commercially available depletion columns and will be of high importance for future proteomic studies on serum samples.  相似文献   

9.
Controversy exists regarding the proper mining of the human serum proteome. Because of the analytical challenges of accurately measuring samples containing a very large dynamic range of protein concentrations, current practices have employed depletion of the highly abundant housekeeping serum proteins, such as albumin and immunoglobins. There is question as to the selectivity of depletion, namely, is there loss of other non abundant serum proteins along with albumin, haptoglobin and other commonly depleted proteins. In this study, human serum was analyzed with and without immunoaffinity depletion of the six most abundant proteins by multidimensional liquid chromatography tandem mass spectrometry. Two replicates of each experiment were conducted and compared against one another. In both depleted and nondepleted replicates there was a 73% and 72% overlap of identified peptides and a 64% and 78% overlap of identified proteins, respectively. Of 262 unique proteins identified in the four experiments, 82 were found in common to all four experiments, 142 unique to the depleted serum, and 38 unique to the nondepleted serum. Although serum depletion of highly abundant proteins significantly increased the number of proteins identified, both the degree of sample complexity and this depletion method resulted in a nonselective loss of other proteins.  相似文献   

10.
High abundance proteins in serum and plasma (e.g., albumin) are routinely removed during proteomic sample processing as they can mask lower abundance proteins and peptides of biological/clinical interest. A common method of albumin depletion is based on immunoaffinity capture, and many immunoaffinity devices are designed for multiple uses. In this case, it is critical that the albumin captured on the affinity matrix is stripped from the column prior to regeneration of the matrix and processing of subsequent samples, to ensure no carryover and that maximal binding sites are available for subsequent samples. The current study examines the ability of a manufacturer's protocol to remove the proteins and peptides captured by an immunoaffinity spin column. The data presented in the current work illustrate the difficulty in completely removing albumin from the immunoaffinity device, and consequently, may explain the variability and decreased efficiency shown for this device in previous studies. In summary, the current data present important considerations for the implementation of multiple‐use immunoaffinity devices for processing subsequent clinical samples in a proteomic workflow.  相似文献   

11.
The emerging scientific field of proteomics encompasses the identification, characterization, and quantification of the protein content or proteome of whole cells, tissues, or body fluids. The potential for proteomic technologies to identify and quantify novel proteins in the plasma that can function as biomarkers of the presence or severity of clinical disease states holds great promise for clinical use. However, there are many challenges in translating plasma proteomics from bench to bedside, and relatively few plasma biomarkers have successfully transitioned from proteomic discovery to routine clinical use. Key barriers to this translation include the need for "orthogonal" biomarkers (i.e., uncorrelated with existing markers), the complexity of the proteome in biological samples, the presence of high abundance proteins such as albumin in biological samples that hinder detection of low abundance proteins, false positive associations that occur with analysis of high dimensional datasets, and the limited understanding of the effects of growth, development, and age on the normal plasma proteome. Strategies to overcome these challenges are discussed.  相似文献   

12.
Echan LA  Tang HY  Ali-Khan N  Lee K  Speicher DW 《Proteomics》2005,5(13):3292-3303
Systematic detection of low-abundance proteins in human blood that may be putative disease biomarkers is complicated by an extremely wide range of protein abundances. Hence, depletion of major proteins is one potential strategy for enhancing detection sensitivity in serum or plasma. This study compared a recently commercialized HPLC column containing antibodies to six of the most abundant blood proteins ("Top-6 depletion") with either older Cibacron blue/Protein A or G depletion methods or no depletion. In addition, a prototype spin column version of the HPLC column and an alternative prototype two antibody spin column were evaluated. The HPLC polyclonal antibody column and its spin column version are very promising methods for substantially simplifying human serum or plasma samples. These columns show the lowest nonspecific binding of the depletion methods tested. In contrast other affinity methods, particularly dye-based resins, yielded many proteins in the bound fractions in addition to the targeted proteins. Depletion of six abundant proteins removed about 85% of the total protein from human serum or plasma, and this enabled 10- to 20-fold higher amounts of depleted serum or plasma samples to be applied to 2-D gels or alternative protein profiling methods such as protein array pixelation. However, the number of new spots detected on 2-D gels was modest, and most newly visualized spots were minor forms of relatively abundant proteins. The inability to detect low-abundance proteins near expected 2-D staining limits was probably due to both the highly heterogeneous nature of most plasma or serum proteins and masking of many low-abundance proteins by the next series of most abundant proteins. Hence, non2-D methods such as protein array pixelation are more promising strategies for detecting lower abundance proteins after depleting the six abundant proteins.  相似文献   

13.
The main objectives of the study were to: (1) deeply analyse the serum protein composition of Equus caballus, (2) assess the effectiveness of the high-abundant protein depletion and improve the concentration of medium- and low-abundant proteins. The analysis were performed on the blood plasma of three healthy part-Arabian mares. The implementation of two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation – time of flight mass spectrometry allowed us to establish a horse plasma proteome map. Serum proteins were resolved at pH 4 to 7, followed by 12% SDS-PAGE. As a result 136 spots were successfully identified, representing the products of 46 unique genes. Of these, 22 gene products have not been previously identified in horse serum/plasma samples using proteomic tools. Gene ontology analysis showed that almost 30% of all identified gene products belong to the coagulation and complement cascades. These results can undoubtedly serve as a useful and prospective prerequisite for the future analysis of horse plasma proteome changes in different physiological and pathophysiological conditions. The use of the medium- and low-abundant protein enrichment tool increased their abundance and allowed us to identify a higher number of protein gene products. The highest depletion efficiency was observed for the most abundant plasma proteins, that is albumin, IgG heavy chains and serotransferrin.  相似文献   

14.
Cho SY  Lee EY  Lee JS  Kim HY  Park JM  Kwon MS  Park YK  Lee HJ  Kang MJ  Kim JY  Yoo JS  Park SJ  Cho JW  Kim HS  Paik YK 《Proteomics》2005,5(13):3386-3396
Human plasma is the most clinically valuable specimen, containing not only a dynamic concentration range of protein components, but also several groups of high-abundance proteins that seriously interfere with the detection of low-abundance potential biomarker proteins. To establish a high-throughput method for efficient depletion of high-abundance proteins and subsequent fractionation, prior to molecular analysis of proteins, we explored how coupled immunoaffinity columns, commercially available as multiple affinity removal columns (MARC) and free flow electrophoresis (FFE), could apply to the HUPO plasma proteome project. Here we report identification of proteins and construction of a human plasma 2-DE map devoid of six major abundance proteins (albumin, transferrin, IgG, IgA, haptoglobin, and antitrypsin) using MARC. The proteins were identified by PMF, matching with various internal 2-DE maps, resulting in a total of 144 nonredundant proteins that were identified from 398 spots. Tissue plasminogen activator, usually present at 10-60 ng/mL plasma, was also identified, indicative of a potentially low-abundance biomarker. Comparison of representative 2-D gel images of three ethnic groups (Caucasian, Asian-American, African-American) plasma exhibited minor differences in certain proteins between races and sample pretreatment. To establish a throughput fractionation of plasma samples by FFE, either MARC flow-through fractions or untreated samples of Korean serum were subjected to FFE. After separation of samples on FFE, an aliquot of each fraction was analyzed by 1-D gel, in which MARC separation was a prerequisite for FFE work. Thus, a working scheme of MARC --> FFE --> 1-D PAGE --> 2-D-nanoLC-MS/MS may be considered as a widely applicable standard platform technology for fractionation of complex samples like plasma.  相似文献   

15.
Faulkner S  Elia G  Hillard M  O'Boyle P  Dunn M  Morris D 《Proteomics》2011,11(11):2329-2335
Current MS-based proteomics has facilitated the identification of large numbers of proteins from complex mixtures. The bovine plasma proteome has the potential to provide a wealth of information concerning the biological state of an animal. However, during MS-based experiments, higher abundance proteins such as albumin and immunoglobulin G (IgG) can hinder the identification of potentially important proteins that are present in much lower abundance. While a variety of readily available technologies exist for the depletion of multiple high-abundance proteins from human, mouse and rat samples, there are few available for bovine. In this study, we report the depletion of >97% of albumin and >92% of IgG from bovine plasma.  相似文献   

16.
Serum analysis represents an extreme challenge due to the dynamic range of the proteins of interest, and the high structural complexity of the constituent proteins. In serum, the quantities of proteins and peptides of interest range from those considered "high abundance", present at 2-70% by mass of total protein, to those considered "low abundance", present at 10(-12) M or less. This range of analytical target molecules is outside the realm of available technologies for proteomic analysis. Therefore, in this study, we have developed a workflow toward addressing the complexity of these samples through the application of multidimensional separation techniques. The use of reversed-phase methods for the separation and fractionation of protein samples has been investigated, with the goal of developing an optimized serum separation for application to proteomic analysis. Samples of human serum were depleted of the six most abundant proteins, using an immunoaffinity LC method, then were separated under a variety of reversed-phase (RP) conditions using a macroporous silica C18 surface modified column material. To compare the qualities of the RP separations of this complex protein sample, absorbance chromatograms were compared, and fractions were collected for off-line SDS-PAGE and 2D-LC-MS/MS analysis. The column fractions were further investigated by determination of protein identities using either whole selected fractions, or gel bands excised from SDS-PAGE gels of the fractions. In either case samples underwent tryptic fragmentation and peptide analysis using MALDI-MS or LC-MS/MS. The preferred conditions for RP protein separation exhibited reproducibly high resolution and high protein recoveries (>98%, as determined by protein assay). Using the preferred conditions also permitted high column mass load, with up to 500 microg of protein well tolerated using a 4.6 mm ID x 50 mm column, or up to 1.5 mg on a 9.4 mm ID x 50 mm column. Elevated column temperature (80 degrees C) was observed to be a critical operational parameter, with poorer results observed at lower temperatures. The combination of sample simplification by immunoaffinity depletion combined with a robust and high recovery RP-HPLC fractionation yields samples permitting higher quality protein identifications by coupled LC-MS methods.  相似文献   

17.
The plasma proteome has a wide dynamic range of protein concentrations and is dominated by a few highly abundant proteins. Discovery of novel cancer biomarkers using proteomics is particularly challenging because specific biomarkers are expected to be low abundance proteins with normal blood concentrations of low nanograms per milliliter or less. Conventional, one- and two-dimensional proteomic methods including 2D PAGE, 2D DIGE, LC-MS/MS, and LC/LC-MS/MS do not have the capacity to consistently detect many proteins in this range. In contrast, new higher dimensional (Hi-D) separation strategies, utilizing more than two dimensions of fractionation, can profile the low abundance proteome.  相似文献   

18.
Plasma is the most easily accessible source for biomarker discovery in clinical proteomics. However, identifying potential biomarkers from plasma is a challenge given the large dynamic range of proteins. The potential biomarkers in plasma are generally present at very low abundance levels and hence identification of these low abundance proteins necessitates the depletion of highly abundant proteins. Sample pre-fractionation using immuno-depletion of high abundance proteins using multi-affinity removal system (MARS) has been a popular method to deplete multiple high abundance proteins. However, depletion of these abundant proteins can result in concomitant removal of low abundant proteins. Although there are some reports suggesting the removal of non-targeted proteins, the predominant view is that number of such proteins is small. In this study, we identified proteins that are removed along with the targeted high abundant proteins. Three plasma samples were depleted using each of the three MARS (Hu-6, Hu-14 and Proteoprep 20) cartridges. The affinity bound fractions were subjected to gelC-MS using an LTQ-Orbitrap instrument. Using four database search algorithms including MassWiz (developed in house), we selected the peptides identified at <1% FDR. Peptides identified by at least two algorithms were selected for protein identification. After this rigorous bioinformatics analysis, we identified 101 proteins with high confidence. Thus, we believe that for biomarker discovery and proper quantitation of proteins, it might be better to study both bound and depleted fractions from any MARS depleted plasma sample.  相似文献   

19.
One of the major challenges facing protein analysis is the dynamic range of protein expression within massively complex samples (Corthals, G. L. et al.., Electrophoresis 2000, 21, 1104-1115). In plasma this difference is as great as ten orders of magnitude, and this is currently beyond the range of detection achievable by any of the analytical techniques. Plasma has the additional challenge of having a few highly abundant proteins, such as albumin, which mask the detection of lower abundance and biologically significant proteins. The use of the Gradiflow BF400 as a fractionation tool to deplete highly abundant albumin from human plasma is reported here. A sequential three-step protocol was performed on five plasma samples as part of the International Plasma Proteome Project organised by the HUPO; four containing different anticoagulants: EDTA, citrate, heparin and a control sample (NIBSC); and a serum sample. Plasma from an alternate source also underwent fractionation and served as an in-house control. Time modulation between 1 and 7 h was observed for the depletion of albumin from these samples. Following albumin depletion, each fraction was trypsin-digested and the peptides were fractionated further using a 2-D LC-MS/MS. Differences in the total number of proteins identified for each sample were also noted.  相似文献   

20.
Brand J  Haslberger T  Zolg W  Pestlin G  Palme S 《Proteomics》2006,6(11):3236-3242
The selective removal of high-abundance proteins is considered to be an important prerequisite for a sensitive proteome analysis in plasma. In this study, we examined the "multiaffinity removal system", an immunoaffinity depletion column targeted against six plasma proteins. As determined by sandwich ELISA, the depletion rate for each target protein is >99% over 200 cycles of regeneration. Our data give evidence that two column antibodies are slowly inactivated during the repeated use of the column; however, the individual depletion rate meets the specification of the manufacturer. To estimate a potential loss of analytes after the immunodepletion, we performed spiking/recovery experiments with a selection of tumor markers at concentrations in the lower to medium ng/mL range. The average recovery of 9 out of 11 markers is 78%. A significant proportion of two other markers binds to the column. Based on the average marker recovery and a depletion of ;85% of the total protein we estimate a five-fold enrichment of a potential biomarker by the use of this depletion column. We conclude that the selective depletion of plasma proteins by immunoaffinity chromatography is a valid strategy for the enrichment of potential biomarkers sought by proteomics methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号