首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was therefore probably a result of H2O2 generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought.  相似文献   

2.
The induction of DNA damage in cells heated at hyperthermic (43-48 degrees C) temperatures was determined by alkaline filter elution and alkaline sucrose gradient-sedimentation analysis of cell DNA denatured at pH 13.0. A class of DNA lesion which converted to strand breaks during denaturation of DNA at pH 13.0 was produced randomly throughout the cell DNA at temperatures as low as 43 degrees C. Induction of this lesion occurred with a T0 of 90 and 10 min at 45 and 48 degrees C, respectively. We estimate that these pH 13.0-detectable DNA lesions are produced in the cell DNA with a frequency of approximately 75 and 660 per min of heating at 45 and 48 degrees C, respectively. Since the lesions were quantitatively converted to DNA strand breaks at pH 13.0 with a half-time of 30 min, or less, we suggest that these pH 13.0-detectable DNA lesions are heat-induced, abasic DNA sites. The induction of these lesions does not appear to be directly involved in the initial heat-induced inhibition of DNA synthesis. The presence of these lesions cannot be excluded as an explanation for the long-term inhibition of replicon initiated in heated cells.  相似文献   

3.
Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells   总被引:1,自引:0,他引:1  
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.  相似文献   

4.
Yao X  Zhong L 《Mutation research》2005,587(1-2):38-44
Perfluorooctanoic acid (C8HF15O2, PFOA) is widely used in various industrial fields for decades and it is environmentally bioaccumulative. PFOA is known as a potent hepatocarcinogen in rodents. But it is not yet clear whether it is also carcinogenic in humans, and the genotoxic effects of PFOA on human cells have not yet been examined. In this study, the genotoxic potential of PFOA was investigated in human hepatoma HepG2 cells in culture using single cell gel electrophoresis (SCGE) assay and micronucleus (MN) assay. In order to clarify the underlying mechanism(s) we measured the intracellular generation of reactive oxygen species (ROS) using dichlorofluorescein diacetate as a fluorochrome. The level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) in PFOA-treated HepG2 cells. PFOA at 50-400 microM caused DNA strand breaks and at 100-400 microM MN in HepG2 cells both in a dose-dependent manner. Significantly increased levels of ROS and 8-OHdG were observed in these cells. We conclude that PFOA exerts genotoxic effects on HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS.  相似文献   

5.
Genotoxicity of complex mixtures of organic compounds adsorbed onto ambient air particles (extractable organic matter, EOM) collected in Teplice (Czech Republic) as well as genotoxicity of the indirectly acting carcinogens benzo[a]pyrene (B[a]P) and 5,9-dimethyl-7H-dibenzo[c,g]carbazole (5,9-diMeDBC) was studied in human HepG2 and Caco-2 cells cultured in vitro. The level of DNA breaks was detected by conventional single-cell gel electrophoresis (alkaline comet assay). The level of DNA breaks+oxidative DNA lesions was assessed by modified single-cell gel electrophoresis. The indirectly acting chemical carcinogens studied were able to induce DNA breaks as well as oxidative DNA damage in both cell lines, but stronger DNA-damaging effects were observed in HepG2 cells, which contain a higher level of metabolic enzymes. Treatment of cells with the complex mixtures showed a dose-dependent increase of DNA breaks in HepG2 cells as well as in Caco-2 cells, with seasonal differences. Winter samples of EOM from Teplice (TP-W) were more effective in inducing DNA damage than summer samples (TP-S). Both mixtures caused significant oxidative DNA damage in HepG2 cells. The effect was less evident in cells treated with higher concentrations of TP-W, since the comet assay is limited by saturation at a higher level of DNA damage. Possible reduction of B[a]P-, 5,9-diMeDBC- or EOM-induced DNA damage by Vitamins E and C was evaluated in HepG2 cells only. Pre-treatment of these cells with either one of the vitamins considerably reduced the levels of both DNA breaks and oxidative DNA lesions induced by all compounds investigated.  相似文献   

6.
The influence of the nuclear ADP-ribosyltransferase inhibitor 3-aminobenzamide on the DNA strand-break rejoining kinetics and cytotoxicity in Chinese hamster ovary cells following H2O2 treatment was investigated. For the DNA damage studies, cells were treated on ice with H2O2 (0-20 microM) for 1 h in serum-free medium, after which the H2O2 was removed and the cells were allowed to repair their damage in complete medium at 37 degrees C in the presence or absence of 3-aminobenzamide (5 mM) for periods up to 2 h. The DNA strand breaks remaining as a function of time were then estimated by alkaline elution. A linear relationship between the H2O2 concentration and the initial level of DNA single-strand breaks (zero time allowed for repair) was observed. No double-strand breaks or DNA-protein cross-links were detected at these doses. The rejoining of single-strand breaks after H2O2 (20 microM) alone was characterized by a single exponential process with a t1/2 of approx. 5 min. However, in the presence of 3-aminobenzamide, rejoining was much slower and biphasic, with t1/2 of approx. 10 and 36 min. The inhibitory action of 3-aminobenzamide was concentration-dependent and completely reversible in that, when the 3-aminobenzamide was removed from the treated cultures, the strand-break rejoining kinetics rapidly returned to the t1/2 of 5 min typical of H2O2 alone. Considerably higher concentrations of H2O2 (up to 600 microM) were required for cell killing compared to the DNA damage studies. Cell killing by H2O2 alone was characterized by a shoulderless, exponential survival curve (D0 = 880 microM). The cytotoxicity was potentiated when the cells were treated with 3-aminobenzamide (5 mM) for 1 h after the H2O2 treatment; the survival curve with 3-aminobenzamide also assumed a biphasic character (D0 of 212 microM and 520 microM). These results are consistent with the theory that OH.-induced single-strand breaks do not normally represent lethal lesions to the cell because of their rapid, efficient repair. However, interference with these repair processes (in this case by 3-aminobenzamide) can alter this relationship, possibly allowing lesion fixation.  相似文献   

7.
J A Woods  R F Bilton  A J Young 《FEBS letters》1999,449(2-3):255-258
In this study, the alkaline version of the comet assay has been used to determine the effect of beta-carotene supplementation (10 microM) on peroxide-initiated free radical-mediated DNA damage in human HepG2 hepatoma cells. In supplemented cells, beta-carotene failed to afford any protection against hydrogen peroxide-induced DNA strand breaks. Indeed, levels of strand breaks in supplemented cells were significantly higher than in cells exposed to hydrogen peroxide alone, especially after a long incubation period. In contrast, beta-carotene afforded significant levels of protection against DNA strand breaks when cells were treated with tert-butyl hydroperoxide. In this case, the level of protection increased as supplementation continued.  相似文献   

8.
9.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress.  相似文献   

10.
Potassium bromate (KBrO3, PB) is a by-product of ozone used as disinfectant in drinking water. And PB is also a widely used food additive. However, there is little known about its adverse effects, in particular those related to its genotoxicity in humans. The aim of this study was to investigate the genotoxic effects of PB and the underlying mechanisms, using human hepatoma cell line, HepG2. Exposure of the cells to PB caused a significant increase of DNA migration in single cell gel electrophoresis (SCGE) assay and micronuclei (MN) frequencies in micronucleus test (MNT) at all tested concentrations (1.56–12.5 mM and 0.12–1 mM), which suggested that PB-mediated DNA strand breaks and chromosome damage. To indicate the role of antioxidant in those effects, DNA migration was monitored by pre-treatment with hydroxytyrosol (HT) as an antioxidant in SCGE assay. It was found that DNA migration with pre-treatment of HT was dramatically decreased. To elucidate the genotoxicity mechanisms, the study monitored the levels of reactive oxygen species (ROS), glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG). PB was shown to induce ROS production (12.5 mM), GSH depletion (1.56–12.5 mM) and 8-OHdG formation (6.25–12.5 mM) in HepG2 cells. Moreover, lysosomal membrane stability and mitochondrial membrane potential were further studied for the mechanisms of PB-induced genotoxicity. A significant increase was found in the range of 6.25–12.5 mM in lysosomal membrane stability assay. However, under these PB concentrations, we were not able to detect the changes of mitochondrial membrane potential. These results suggest that PB exerts oxidative stress and genotoxic effects in HepG2 cells, possibly through the mechanisms of lysosomal damage, an earlier event preceding the oxidative DNA damage.  相似文献   

11.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress.  相似文献   

12.
Severe combined immunodeficient (Scid) mice have a mutation in the catalytic subunit of the DNA binding protein kinase that is involved in repair of double-strand breaks in DNA. To determine if the protein also influences repair of single-strand breaks, we examined the ability of Scid cells to repair lesions introduced by ultraviolet light and gamma-ray irradiation. DNA repair was measured both in total genomic DNA and in specific genes from murine Scid and wildtype fibroblast cell lines. The removal of pyrimidine dimers and repair of strand breaks in genes was measured using quantitative Southern blot analyses. After ultraviolet irradiation, there was no significant difference in the repair of photoproducts in bulk DNA between Scid and wildtype cells, as measured by cellular survival and unscheduled DNA synthesis. However, deficient repair was evident in genes, where Scid cells had 25-50% less repair in the c-myc and dihydrofolate reductase genes. After gamma-irradiation, Scid fibroblasts had 20-35% less repair of DNA breaks in immunoglobulin kappa and heavy constant genes than wildtype cells. The data suggest that intact DNA-PK enzyme is needed for the efficient operation of cellular repair of pyrimidine dimers and single-strand breaks in genes, as well as in its established role in rejoining double-strand breaks.  相似文献   

13.
Using filter elution techniques, we have measured the level of induced single- and double-strand DNA breaks and the rate of strand break rejoining following exposure of two Chinese hamster ovary (CHO) cell mutants to bleomycin or neocarzinostatin. These mutants, designated BLM-1 and BLM-2, were isolated on the basis of hypersensitivity to bleomycin and are cross-sensitive to a range of other free radical-generating agents, but exhibit enhanced resistance to neocarzinostatin. A 1-h exposure to equimolar doses of bleomycin induces a similar level of DNA strand breaks in parental CHO-K1 and mutant BLM-1 cells, but a consistently higher level is accumulated by BLM-2 cells. The rate of rejoining of bleomycin-induced single- and double-strand DNA breaks is slower in BLM-2 cells than in CHO-K1 cells. BLM-1 cells show normal strand break repair kinetics. The level of single- and double-strand breaks induced by neocarzinostatin is lower in both BLM-1 and BLM-2 cells than in CHO-K1 cells. The rate of repair of neocarzinostatin-induced strand breaks is normal in BLM-1 cells but retarded somewhat in BLM-2 cells. Thus, there is a correlation between the level of drug-induced DNA damage in BLM-2 cells and the bleomycin-sensitive, neocarzinostatin resistant phenotype of this mutant. Strand breaks induced by both of these agents are also repaired with reduced efficiency by BLM-2 cells. The neocarzinostatin resistance of BLM-1 cells appears to be a consequence of a reduced accumulation of DNA damage. However, the bleomycin-sensitive phenotype of BLM-1 cells does not apparently correlate with any alteration in DNA strand break induction or repair, as analysed by filter elution techniques, suggesting an alternative mechanism of cell killing.  相似文献   

14.
DNA repair in human promyelocytic cell line, HL-60.   总被引:2,自引:2,他引:0       下载免费PDF全文
The human promyelocytic cell line, HL-60, shows large changes in endogenous poly(ADP-ribose) and in nuclear ADP-ribosyl transferase activity (ADPRT) during its induced myelocytic differentiation. DNA strand-breaks are an essential activator for this enzyme; and transient DNA strand breaks occur during the myelocytic differentiation of HL-60 cells. We have tested the hypothesis that these post-mitotic, terminally differentiating cells are less efficient in DNA repair, and specifically in DNA strand rejoining, than their proliferating precursor cells. We have found that this hypothesis is not tenable. We observe that there is no detectable reduction in the efficiency of DNA excision repair after exposure to either dimethyl sulphate or gamma-irradiation in HL-60 cells induced to differentiate by dimethyl sulphoxide. Moreover, the efficient excision repair of either dimethyl sulphate or gamma-irradiation induced lesions, both in the differentiated and undifferentiated HL-60 cells, is blocked by the inhibition of ADPRT activity.  相似文献   

15.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

16.
端粒是位于真核细胞染色体末端的DNA-蛋白质复合体,在维持染色体稳定上起着重要的作用,并且与细胞的衰老和凋亡有着密切的关系.在各种DNA损伤中,单链断裂(single-strand breaks, SSBs)是最常见的类型之一,既可直接通过内源活性氧或离子化辐射产生,也可间接地在DNA代谢或碱基切除修复期间产生.已知多聚(ADP-核糖)聚合酶[poly(ADPribose) polymerase, PARP]在SSBs修复中起着极为重要的作用.本实验观察了PARP抑制剂3-氨基苯酰胺(3-aminobenzamide, 3-AB)对氧化应激诱导的HeLa细胞端粒DNA链断裂重连接的效应以及对过氧化氢(H2O2)抑制HeLa细胞增殖的影响.结果表明3-AB能够显著地抑制氧化应激诱导的HeLa细胞端粒DNA链断裂后的重连接作用,并能增强H2O2对HeLa细胞增殖的抑制作用,提示PARP参与了端粒DNA链断裂损伤的修复过程.  相似文献   

17.
There is evidence suggesting that radiosensitization induced in mammalian cells by substitution in the DNA of thymidine with BrdU has a component that relies on inhibition of repair and/or fixation of radiation damage. Here, experiments designed to study the mechanism of this phenomenon are described. The effect of BrdU incorporation into DNA was studied on cellular repair capability, rejoining of interphase chromosome breaks, as well as induction and rejoining of DNA double- and single-stranded breaks (DSBs and SSBs) in plateau-phase CHO cells exposed to X rays. Repair of potentially lethal damage (PLD), as measured by delayed plating of plateau-phase cells, was used to assay cellular repair capacity. Rejoining of interphase chromosome breaks was assayed by means of premature chromosome condensation (PCC); induction and rejoining of DNA DSBs were assayed by pulsed-field gel electrophoresis and induction and rejoining of DNA SSBs by DNA unwinding. A decrease was observed in the rate of repair of PLD in cells grown in the presence of BrdU, the magnitude of which depended upon the degree of thymidine replacement. The relative increase in survival caused by PLD repair was larger in cells substituted with BrdU and led to a partial loss of the radiosensitizing effect compared to cells tested immediately after irradiation. A decrease was also observed in the rate of rejoining of interphase chromosome breaks as well as in the rate of rejoining of the slow component of DNA DSBs in cells substituted with BrdU. The time constants measured for the rejoining of the slow component of DNA DSBs and of interphase chromosome breaks were similar both in the presence and in the absence of BrdU, suggesting a correlation between this subset of DNA lesions and interphase chromosome breaks. It is proposed that a larger proportion of radiation-induced potentially lethal lesions becomes lethal in cells grown in the presence of BrdU. Potentially lethal lesions are fixed via interaction with processes associated with cell cycle progression in cells plated immediately after irradiation, but can be partly repaired in cells kept in the plateau-phase. It is hypothesized that fixation of PLD is caused by alterations in chromatin conformation that occur during normal progression of cells throughout the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Poly(ADP-ribose) polymerase 1 (PARP1), an enzyme activated by DNA strand breaks, synthesizes polymers of poly(ADP-ribose) (PAR) that modify chromatin and other proteins and play a role in DNA repair. Inhibition of PARP1 activity is considered a potentially important strategy in clinical practice, especially to sensitize tumor cells to chemo- and radio-therapy. Here we examined the influence of inhibition of PARP1 on formation of reactive oxygen species (ROS) and on DNA repair in cells exposed to ionizing radiation (IR). K562 (human myelogenous leukaemia) cells were grown and exposed to 4 or 12Gy of ionizing radiation in presence or absence of the PARP inhibitor NU1025 (100μM). Intracellular ROS were assayed using the probe 2,7-dichlorofluorescein with detection by flow cytometry and the rejoining of DNA strand breaks were followed by alkaline single cell gel electrophoresis (comet) assays. In untreated cells a significant increase in PAR formation occurred during the first 5min after IR, followed by a gradual decrease up to 30min. Addition of a PARP inhibitor arrested the production of PAR almost completely and decreased the rate of rejoining of DNA strand breaks significantly; however, 3h after irradiation we observed no difference in the amount of DNA strand breaks between PARP inhibitor-treated and untreated cells. Twelve to 48h after irradiation, an increase of ROS concentration was observed in irradiated cells and ROS levels in PARP inhibitor-treated cells were significantly higher than in cells without inhibitor. Irradiated cells grown in the presence or absence of PARP inhibitor did not differ in the frequencies of apoptotic and necrotic cells or in the activity of caspases at 24, 48 and 72h after irradiation. Poly(ADP-ribosylation) and inhibition of PARP1 appeared to modulate DNA strand break rejoining and influence the concentration of ROS in irradiated cells.  相似文献   

19.
The rate of rejoining of DNA strand breaks induced by 10 krads of γ-irradiation was studied in a progeria cell strain with a markedly reduced repair capacity. An increased rate of DNA repair could be induced in these cells by co-cultivating them at high density for 8 to 24 h prior to irradiation with an established hamster cell line, a mid-passage normal human diploid strain, or a second progeria strain. Co-cultivation with late passage and terminally senescent diploid cells did not, however, appear to stimulate repair in progeria cells.  相似文献   

20.
The time scale for rejoining of radiation-induced deoxyribonucleic acid (DNA) single-strand breaks was measured in the presence and absence of oxygen. The involvement of DNA polymerase I in this repair process was studied. Formation and rejoining of DNA strand breaks were measured in lambda DNA infecting lysogenic pol(+) and polA1 strains of Escherichia coli irradiated by 4 MeV electrons under identical conditions. Irradiation and transfer to alkaline detergent could be completed in less than 180 ms. The initial yields of DNA strand breaks were identical in pol(+) and polA1 host cells and four- to fivefold higher in the presence of oxygen than in nitrogen anoxia. Evidence for the existence of a very fast repair process, independent of DNA polymerase I, was not found, since no rejoining of radiation-induced DNA strand breaks was observed during incubation from 45 ms to 3 s. In pol(+) host cells most of the strand breaks produced in the presence of oxygen were rejoined within the first 30 to 40 s of incubation, whereas no rejoining could be detected within the same period of time in anoxic cells. Since no rejoining of broken lambda DNA molecules was observed in polA1 host cells, it is concluded that the synthetase activity of DNA polymerase I is involved in the rejoining of DNA breaks induced by radiation in the presence of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号