首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.  相似文献   

2.
Machupo virus (MACV), a New World arenavirus, is the etiological agent of Bolivian hemorrhagic fever (BHF). Junin virus (JUNV), a close relative, causes Argentine hemorrhagic fever (AHF). Previously, we reported that a recombinant, chimeric MACV (rMACV/Cd#1-GPC) expressing glycoprotein from the Candid#1 (Cd#1) vaccine strain of JUNV is completely attenuated in a murine model and protects animals from lethal challenge with MACV. A rMACV with a single F438I substitution in the transmembrane domain (TMD) of GPC, which is equivalent to the F427I attenuating mutation in Cd#1 GPC, was attenuated in a murine model but genetically unstable. In addition, the TMD mutation alone was not sufficient to fully attenuate JUNV, indicating that other domains of the GPC may also contribute to the attenuation. To investigate the requirement of different domains of Cd#1 GPC for successful attenuation of MACV, we rescued several rMACVs expressing the ectodomain of GPC from Cd#1 either alone (MCg1), along with the TMD F438I substitution (MCg2), or with the TMD of Cd#1 (MCg3). All rMACVs exhibited similar growth curves in cultured cells. In mice, the MCg1 displayed significant reduction in lethality as compared with rMACV. The MCg1 was detected in brains and spleens of MCg1-infected mice and the infection was associated with tissue inflammation. On the other hand, all animals survived MCg2 and MCg3 infection without detectable levels of virus in various organs while producing neutralizing antibody against Cd#1. Overall our data suggest the indispensable role of each GPC domain in the full attenuation and immunogenicity of rMACV/Cd#1 GPC.  相似文献   

3.
Candid1, a live-attenuated Junin virus vaccine strain, was developed during the early 1980s to control Argentine hemorrhagic fever, a severe and frequently fatal human disease. Six amino acid substitutions were found to be unique to this vaccine strain, and their role in virulence attenuation in mice was analyzed using a series of recombinant viruses. Our results indicate that Candid1 is attenuated in mice through a single amino acid substitution in the transmembrane domain of the G2 glycoprotein. This work provides insight into the molecular mechanisms of attenuation of the only arenavirus vaccine currently available.  相似文献   

4.
Human respiratory syncytial virus (RSV) exists as two antigenic subgroups, A and B, both of which should be represented in a vaccine. The F and G glycoproteins are the major neutralization and protective antigens, and the G protein in particular is highly divergent between the subgroups. The existing system for reverse genetics is based on the A2 strain of RSV subgroup A, and most efforts to develop a live attenuated RSV vaccine have focused on strain A2 or other subgroup A viruses. In the present study, the development of a live attenuated subgroup B component was expedited by the replacement of the F and G glycoproteins of recombinant A2 virus with their counterparts from the RSV subgroup B strain B1. This gene replacement was initially done for wild-type (wt) recombinant A2 virus to create a wt AB chimeric virus and then for a series of A2 derivatives which contain various combinations of A2-derived attenuating mutations located in genes other than F and G. The wt AB virus replicated in cell culture with an efficiency which was comparable to that of the wt A2 and B1 parents. AB viruses containing temperature-sensitive mutations in the A2 background exhibited levels of temperature sensitivity in vitro which were similar to those of A2 viruses bearing the same mutations. In chimpanzees, the replication of the wt AB chimera was intermediate between that of the A2 and B1 wt viruses and was accompanied by moderate rhinorrhea, as previously seen in this species. An AB chimeric virus, rABcp248/404/1030, which was constructed to contain a mixture of attenuating mutations derived from two different biologically attenuated A2 viruses, was highly attenuated in both the upper and lower respiratory tracts of chimpanzees. This attenuated AB chimeric virus was immunogenic and conferred a high level of resistance on chimpanzees to challenge with wt AB virus. The rABcp248/404/1030 chimeric virus is a promising vaccine candidate for RSV subgroup B and will be evaluated next in humans. Furthermore, these results suggest that additional attenuating mutations derived from strain A2 can be inserted into the A2 background of the recombinant chimeric AB virus as necessary to modify the attenuation phenotype in a reasonably predictable manner to achieve an optimal balance between attenuation and immunogenicity in a virus bearing the subgroup B antigenic determinants.  相似文献   

5.
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.  相似文献   

6.
7.
A licensed live attenuated influenza vaccine is available as a trivalent mixture of types A (H1N1 and H3N2) and B vaccine viruses. Thus, interference among these viruses could restrict their replication, affecting vaccine efficacy. One approach to overcoming this potential problem is to use a chimeric virus possessing type B hemagglutinin (HA) and neuraminidase (NA) in a type A vaccine virus background. We previously generated a type A virus possessing a chimeric HA in which the entire ectodomain of the type A HA molecule was replaced with that of the type B HA, and showed that this virus protected mice from challenge by a wild-type B virus. In the study described here, we generated type A/B chimeric viruses carrying not only the chimeric (A/B) HA, but also the full-length type B NA instead of the type A NA, resulting in (A/B) HA/NA chimeric viruses possessing type B HA and NA ectodomains in the background of a type A virus. These (A/B) HA/NA chimeric viruses were attenuated in both cell culture and mice as compared with the wild-type A virus. Our findings may allow an effective live influenza vaccine to be produced from a single master strain, providing a model for the design of future live influenza vaccines.  相似文献   

8.
Recovery from Lassa virus (LASV) infection usually precedes the appearance of neutralizing antibodies, indicating that cellular immunity plays a primary role in viral clearance. To date, the role of LASV-specific CD8(+) T cells has not been evaluated in humans. To facilitate such studies, we utilized a predictive algorithm to identify candidate HLA-A2 supertype epitopes from the LASV nucleoprotein and glycoprotein precursor (GPC) genes. We identified three peptides (GPC(42-50), GLVGLVTFL; GPC(60-68), SLYKGVYEL; and GPC(441-449), YLISIFLHL) that displayed high-affinity binding (< or =98 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LASV GPC in human HLA-A*0201-positive target cells. HLA-A*0201 mice immunized with either GPC(42-50) or GPC(60-68) were protected against challenge with a recombinant vaccinia virus that expressed LASV GPC. The epitopes identified in this study represent potential diagnostic reagents and candidates for inclusion in epitope-based vaccine constructs. Our approach is applicable to any pathogen with existing sequence data, does not require manipulation of the actual pathogen or access to immune human donors, and should therefore be generally applicable to category A through C agents and other emerging pathogens.  相似文献   

9.
Although live-attenuated influenza vaccines (LAIV) are safe for use in protection against seasonal influenza strains, concerns regarding their potential to reassort with wild-type virus strains have been voiced. LAIVs have been demonstrated to induce enhanced mucosal and cell-mediated immunity better than inactivated vaccines while also requiring a smaller dose to achieve a protective immune response. To address the need for a reassortment-incompetent live influenza A virus vaccine, we have designed a chimeric virus that takes advantage of the fact that influenza A and B viruses do not reassort. Our novel vaccine prototype uses an attenuated influenza B virus that has been manipulated to express the ectodomain of the influenza A hemagglutinin protein, the major target for eliciting neutralizing antibodies. The hemagglutinin RNA segment is modified such that it contains influenza B packaging signals, and therefore it cannot be incorporated into a wild-type influenza A virus. We have applied our strategy to different influenza A virus subtypes and generated chimeric B/PR8 HA (H1), HK68 (H3), and VN (H5) viruses. All recombinant viruses were attenuated both in vitro and in vivo, and immunization with these recombinant viruses protected mice against lethal influenza A virus infection. Overall, our data indicate that the chimeric live-attenuated influenza B viruses expressing the modified influenza A hemagglutinin are effective LAIVs.  相似文献   

10.
The Old World arenavirus Lassa virus (LASV) is the causative agent of severe viral hemorrhagic fever (VHF) in humans and is the most prevalent human pathogen among arenaviruses. The present study investigated the largely unknown mechanisms of cell entry of LASV, a process know to be mediated solely by the virus envelope glycoprotein (GP). To circumvent biosafety restrictions associated with the use of live LASV, we used reverse genetics to generate a recombinant variant of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV GP (rLCMV-LASVGP). The rescued rLCMV-LASVGP grew to titers comparable to that of LCMV and showed the receptor binding characteristics of LASV. We used rLCMV-LASVGP to characterize the cellular mechanisms of LASV entry in the context of a productive arenavirus infection. The kinetics of pH-dependent membrane fusion of rLCMV-LASVGP resembled those of the human-pathogenic New World arenavirus Junin virus (JUNV) and other enveloped viruses that use clathrin-mediated endocytosis for entry. However, rLCMV-LASVGP entered cells predominantly via a clathrin-, caveolin-, and dynamin-independent endocytotic pathway similar to the one recently described for LCMV. Productive infection of rLCMV-LASVGP was only mildly affected by a dominant negative mutant of Rab5 and was independent of Rab7, suggesting an unusual mechanism of delivery to endosomes. In addition, rLCMV-LASVGP infection was independent of actin but required intact microtubules. Our data indicate that LASV enters cells via a pathway distinct from the one used by human-pathogenic New World arenaviruses.  相似文献   

11.
We constructed chimeric dengue type 2/type 1 (DEN-2/DEN-1) viruses containing the nonstructural genes of DEN-2 16681 virus or its vaccine derivative, strain PDK-53, and the structural genes (encoding capsid protein, premembrane protein, and envelope glycoprotein) of DEN-1 16007 virus or its vaccine derivative, strain PDK-13. We previously reported that attenuation markers of DEN-2 PDK-53 virus were encoded by genetic loci located outside the structural gene region of the PDK-53 virus genome. Chimeric viruses containing the nonstructural genes of DEN-2 PDK-53 virus and the structural genes of the parental DEN-1 16007 virus retained the attenuation markers of small plaque size and temperature sensitivity in LLC-MK(2) cells, less efficient replication in C6/36 cells, and attenuation for mice. These chimeric viruses elicited higher mouse neutralizing antibody titers against DEN-1 virus than did the candidate DEN-1 PDK-13 vaccine virus or chimeric DEN-2/DEN-1 viruses containing the structural genes of the PDK-13 virus. Mutations in the envelope protein of DEN-1 PDK-13 virus affected in vitro phenotype and immunogenicity in mice. The current PDK-13 vaccine is the least efficient of the four Mahidol candidate DEN virus vaccines in human trials. The chimeric DEN-2/DEN-1 virus might be a potential DEN-1 virus vaccine candidate. This study indicated that the infectious clones derived from the candidate DEN-2 PDK-53 vaccine are promising attenuated vectors for development of chimeric flavivirus vaccines.  相似文献   

12.
Virulent strains of Newcastle disease virus (NDV) can cause devastating disease in chickens worldwide. Although the current vaccines are substantially effective, they do not completely prevent infection, virus shedding and disease. To produce genotype-matched vaccines, a full-genome reverse genetics system has been used to generate a recombinant virus in which the F protein cleavage site has been changed to that of avirulent vaccine virus. In the other strategy, the vaccines have been generated by replacing the F and HN genes of a commercial vaccine strain with those from a genotype-matched virus. However, the protective efficacy of a chimeric virus vaccine has not been directly compared with that of a full-genome virus vaccine developed by reverse genetics. Therefore, in this study, we evaluated the protective efficacy of genotype VII matched chimeric vaccines by generating three recombinant viruses based on avirulent LaSota (genotype II) strain in which the open reading frames (ORFs) encoding the F and HN proteins were replaced, individually or together, with those of the circulating and highly virulent Indonesian NDV strain Ban/010. The cleavage site of the Ban/010 F protein was mutated to the avirulent motif found in strain LaSota. In vitro growth characteristics and a pathogenicity test indicated that all three chimeric viruses retained the highly attenuated phenotype of the parental viruses. Immunization of chickens with chimeric and full-length genome VII vaccines followed by challenge with virulent Ban/010 or Texas GB (genotype II) virus demonstrated protection against clinical disease and death. However, only those chickens immunized with chimeric rLaSota expressing the F or F plus HN proteins of the Indonesian strain were efficiently protected against shedding of Ban/010 virus. Our findings showed that genotype-matched vaccines can provide protection to chickens by efficiently preventing spread of virus, primarily due to the F protein.  相似文献   

13.
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.  相似文献   

14.
15.
We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These DeltaG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication.  相似文献   

16.
A chimeric porcine circovirus (PCV1-2) with the capsid gene of pathogenic PCV2 cloned into the genomic backbone of nonpathogenic PCV1 is attenuated in pigs but elicits protective immunity against PCV2. In this study, short epitope tags were inserted into the C terminus of the capsid protein of the chimeric PCV1-2 vaccine virus, resulting in a tractable marker virus that is infectious both in vitro and in vivo. Pigs experimentally infected with the epitope-tagged PCV1-2 vaccine viruses produced tag-specific antibodies, as well as anti-PCV2 neutralizing antibodies, indicating that the epitope-tagged viruses could potentially serve as a positive-marker modified live-attenuated vaccine.  相似文献   

17.
18.
【目的】近年来,O型口蹄疫的不断暴发严重危害了我国畜牧业的发展,其病原——O型口蹄疫病毒已演化出3种谱系:中国型猪毒系、泛亚系和缅甸98系。其中中国型猪毒系病毒高度嗜猪,对养猪业危害最大。目前应用的疫苗已不能有效保护中国型猪毒系变异株的流行,这给我国猪口蹄疫的防控带来了极大的困难。为了进一步发展免疫原性好、抗原谱广的猪O型口蹄疫疫苗候选株,本研究以O/HN/93现用疫苗毒株的感染性克隆为骨架,用流行的新猪毒系病毒的部分VP3和VP1基因(主要是替换VP1蛋白上的B-C环和G-H环)替换疫苗毒株的相应部分,构建了嵌合的FMDV全长cDNA克隆。【方法】线化的嵌合全长质粒和表达T7 RNA聚合酶的真核质粒pcDNAT7P共转染BHK-21细胞,体内转录拯救嵌合病毒。【结果】嵌合全长质粒转染BHK-21细胞36h后,出现明显的FMDV致细胞病变效应。对收获的病毒分别用RT-PCR、间接免疫荧光、电子显微镜观察结果证实成功拯救到嵌合的FMDV。拯救的病毒乳鼠致病性试验结果表明该拯救病毒对乳鼠的致病力减弱。该嵌合病毒的成功拯救为研制口蹄疫新型疫苗等奠定了基础。  相似文献   

19.
Influenza A viruses encoding an altered viral NS1 protein have emerged as promising live attenuated vaccine platforms. A carboxy-terminal truncation in the NS1 protein compromises its interferon antagonism activity, making these viruses attenuated in the host yet still able to induce protection from challenge with wild-type viruses. However, specific viral protein expression by NS1-truncated viruses is known to be decreased in infected cells. In this report, we show that recombinant H5N1 and H1N1 influenza viruses encoding a truncated NS1 protein expressed lower levels of hemagglutinin (HA) protein in infected cells than did wild-type viruses. This reduction in HA protein expression correlated with a reduction in HA mRNA levels in infected cells. NS1 truncation affected the expression of HA protein but not that of the nucleoprotein (NP). This segment specificity was mapped to the terminal sequences of their specific viral RNAs. Since the HA protein is the major immunogenic component in influenza virus vaccines, we sought to restore its expression levels in NS1-truncated viruses in order to improve their vaccine efficacy. For this purpose, we generated an NS1-truncated recombinant influenza A/Puerto Rico/8/34 (rPR8) virus carrying the G3A C8U "superpromoter" mutations in the HA genomic RNA segment. This strategy retained the attenuation properties of the recombinant virus but enhanced the expression level of HA protein in infected cells. Finally, mice immunized with rPR8 viruses encoding a truncated NS1 protein and carrying the G3A C8U mutations in the HA segment demonstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rPR8 virus encoding the truncated NS1 protein alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号