首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   35篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   12篇
  2013年   10篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   10篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   10篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1975年   2篇
  1971年   2篇
  1967年   2篇
  1939年   1篇
  1936年   2篇
  1934年   1篇
  1931年   1篇
  1930年   3篇
  1925年   2篇
  1921年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
1.
Calcium as a branching signal in Neurospora crassa   总被引:7,自引:2,他引:5       下载免费PDF全文
The divalent cation ionophore A23187 was found to induce apical branching in Neurospora crassa. Optimal effects were obtained by treatment with 0.1 mM ionophore for 30 min. Branching first became manifest during or shortly after treatment; successive rounds of branching could be observed at later times. Calcium starvation of the mycelium markedly reduced its subsequent response to the ionophore, whereas starvation for other divalent cations had no detectable effect. The branching response was markedly reduced in the presence of 10 to 30 mM cyclic AMP or derivatives thereof.  相似文献   
2.
We used measurements from airborne imaging spectroscopy and LiDAR to quantify the biophysical structure and composition of vegetation on a dryland substrate age gradient in Hawaii. Both vertical stature and species composition changed during primary succession, and reveal a progressive increase in vertical stature on younger substrates followed by a collapse on Pleistocene-aged flows. Tall-stature Metrosideros polymorpha woodlands dominated on the youngest substrates (hundreds of years), and were replaced by the tall-stature endemic tree species Myoporum sandwicense and Sophora chrysophylla on intermediate-aged flows (thousands of years). The oldest substrates (tens of thousands of years) were dominated by the short-stature native shrub Dodonaea viscosa and endemic grass Eragrostis atropioides. We excavated 18 macroscopic charcoal fragments from Pleistocene-aged substrates. Mean radiocarbon age was 2,002 years and ranged from < 200 to 7,730. Genus identities from four fragments indicate that Osteomeles spp. or M. polymorpha once occupied the Pleistocene-aged substrates, but neither of these species is found there today. These findings indicate the existence of fires before humans are known to have occupied the Hawaiian archipelago, and demonstrate that a collapse in vertical stature is prevalent on the oldest substrates. This work contributes to our understanding of prehistoric fires in shaping the trajectory of primary succession in Hawaiian drylands.  相似文献   
3.
The majority of angiosperms produce hermaphrodite flowers, while a lesser number (20–30%) produce unisexual flowers. Little is known about the molecular biology of sex-determination in angiosperms, however, a few sex-determining genes have been cloned from the model system Zea mays. One of these genes is Tasselseed2 (Ts2) which has been shown to be involved in the arrest of developing pistils in male flowers. In this study, we sequenced a putative homologue of Ts2 in species of Bouteloua, a genus in the grass subfamily Chloridoideae. We found significant genetic variation at Ts2 in Bouteloua relative to other developmental genes characterized in maize and other grass species. We also found that in Bouteluoua, Ts2 is evolving non-neutrally in the hermaphrodite-flowered Bouteloua hirsuta while no difference from neutral expectation was detected at Ts2 in the monoecious/dioecious Bouteloua dimorpha. The putatively neutral gene Alcohol Dehydrogenase1 (Adh1) was also examined for the same species of Bouteloua, and no departure from neutral expectation was detected. Our results suggest that purifying selection may be acting on Ts2 in the hermaphrodite-flowered B. hirsuta while no evidence of selection was detected at Ts2 in the monoecious/dioecious B. dimorpha.  相似文献   
4.
5.
6.
7.
Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into cells from all germ lineages, making them a potentially robust cell source for regenerative medicine therapies, but difficulties in predicting and controlling ESC differentiation currently limit the development of therapies and applications from such cells. A common approach to induce the differentiation of ESCs in vitro is via the formation of multicellular aggregates known as embryoid bodies (EBs), yet cell fate specification within EBs is generally considered an ill-defined and poorly controlled process. Thus, the objective of this study was to use rules-based cellular modeling to provide insight into which processes influence initial cell fate transitions in 3-dimensional microenvironments. Mouse embryonic stem cells (D3 cell line) were differentiated to examine the temporal and spatial patterns associated with loss of pluripotency as measured through Oct4 expression. Global properties of the multicellular aggregates were accurately recapitulated by a physics-based aggregation simulation when compared to experimentally measured physical parameters of EBs. Oct4 expression patterns were analyzed by confocal microscopy over time and compared to simulated trajectories of EB patterns. The simulations demonstrated that loss of Oct4 can be modeled as a binary process, and that associated patterns can be explained by a set of simple rules that combine baseline stochasticity with intercellular communication. Competing influences between Oct4+ and Oct4− neighbors result in the observed patterns of pluripotency loss within EBs, establishing the utility of rules-based modeling for hypothesis generation of underlying ESC differentiation processes. Importantly, the results indicate that the rules dominate the emergence of patterns independent of EB structure, size, or cell division. In combination with strategies to engineer cellular microenvironments, this type of modeling approach is a powerful tool to predict stem cell behavior under a number of culture conditions that emulate characteristics of 3D stem cell niches.  相似文献   
8.

Background  

Questions regarding the distribution of stress in the proximal human femur have never been adequately resolved. Traditionally, by considering the femur in isolation, it has been believed that the effect of body weight on the projecting neck and head places the superior aspect of the neck in tension. A minority view has proposed that this region is in compression because of muscular forces pulling the femur into the pelvis. Little has been done to study stress distributions in the proximal femur. We hypothesise that under physiological loading the majority of the proximal femur is in compression and that the internal trabecular structure functions as an arch, transferring compressive stresses to the femoral shaft.  相似文献   
9.
10.

Background

Morphological and functional differences of the right and left ventricle are apparent in the adult human heart. A differential contribution of cardiac fibroblasts and smooth muscle cells (populations of epicardium-derived cells) to each ventricle may account for part of the morphological-functional disparity. Here we studied the relation between epicardial derivatives and the development of compact ventricular myocardium.

Results

Wildtype and Wt1CreERT2/+ reporter mice were used to study WT-1 expressing cells, and Tcf21lacZ/+ reporter mice and PDGFRα-/-;Tcf21LacZ/+ mice to study the formation of the cardiac fibroblast population. After covering the heart, intramyocardial WT-1+ cells were first observed at the inner curvature, the right ventricular postero-lateral wall and left ventricular apical wall. Later, WT-1+ cells were present in the walls of both ventricles, but significantly more pronounced in the left ventricle. Tcf21-LacZ + cells followed the same distribution pattern as WT-1+ cells but at later stages, indicating a timing difference between these cell populations. Within the right ventricle, WT-1+ and Tcf21-lacZ+ cell distribution was more pronounced in the posterior inlet part. A gradual increase in myocardial wall thickness was observed early in the left ventricle and at later stages in the right ventricle. PDGFRα-/-;Tcf21LacZ/+ mice showed deficient epicardium, diminished number of Tcf21-LacZ + cells and reduced ventricular compaction.

Conclusions

During normal heart development, spatio-temporal differences in contribution of WT-1 and Tcf21-LacZ + cells to right versus left ventricular myocardium occur parallel to myocardial thickening. These findings may relate to lateralized differences in ventricular (patho)morphology in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号