首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
基于GOCI影像的湖泊悬浮物浓度分类反演   总被引:4,自引:0,他引:4  
赵丽娜  王艳楠  金琦  冯驰  潘洪洲  张杰  吕恒  李云梅 《生态学报》2015,35(16):5528-5536
悬浮物直接影响到光在水体中的传播,进而影响着水生生态环境,最终决定了湖泊的初级生产力。传统的遥感反演估算模型大多是针对某一湖区进行统一建模,忽视了不同区域水体光学性质的复杂差异性,并且传统的传感器时间分辨率和空间分辨率受到一定限制。针对太湖、巢湖、滇池、洞庭湖4个湖区利用两步聚类法将高光谱模拟到GOCI影像上的波段进行分类,将水体类型分为三类,第一类水体为悬浮物主导的水体,第二类水体为悬浮物和叶绿素a共同主导的水体,第三类水体为叶绿素a主导的水体。针对不同类型水体的光学特征,分别构建了悬浮物浓度反演模型,结果表明第一类水体可以利用B7/B4,第二和第三类水体可以利用B7/(B8+B4)作为波段组合因子对悬浮物浓度进行模型构建。精度验证结果表明,分类建模后第一类和第三类水体悬浮物浓度估算精度都得到了较明显提高,第一类水体RMSE降低了9.19mg/L,MAPE降低了3%,第三类水体RMSE降低了5.63 mg/L,MAPE降低了13.97%,第二类水体精度稍有降低。最后将反演模型应用于2013年5月13日的GOCI影像,可知整体而言太湖西南部地区悬浮物浓度较高,东北部地区悬浮物浓度较低,并且从9:00到15:00,太湖南部悬浮物浓度较高的区域在逐渐缩小。  相似文献   

2.
以千岛湖为研究对象,利用Landsat 7 ETM+遥感影像与野外实测数据,建立叶绿素a浓度的遥感定量反演模型。将叶绿素a浓度与波段反射率组合进行Pearson相关性分析,选择(B4+B2)/B3波段组合构建叶绿素a反演模型,并得到千岛湖叶绿素a浓度的时空分布。结果表明:(1)2007年千岛湖叶绿素a浓度低于4μg/L的水体面积占水体总面积达到99%以上,整体水质优良;(2)千岛湖叶绿素a浓度随季节变化特征明显,夏季容易出现局地高值,秋季平均浓度整体升高;(3)通过反演不同时期的叶绿素a浓度分布,可以刻画出千岛湖藻类的消长过程,从空间上发现易爆发富营养化的区域。该反演模型能较为精确地估算千岛湖的叶绿素a浓度,对今后水体富营养化的监测和预警具有重要意义。  相似文献   

3.
使用实测高光谱数据,研究滇池水体的光谱特征,应用统计方法建立滇池叶绿素a浓度的高光谱反演模型,并基于滇池水体的光谱特征,运用HSV变换融合遥感影像技术,监测水体叶绿素a浓度分布。结果表明:滇池水体光谱的反射峰位于550和700nm附近;此2个反射峰的位置和大小对水体叶绿素a浓度的变化反应最敏感。随着水体叶绿素a浓度升高,2个反射峰的峰值越接近,同时,550nm附近反射峰向短波方向偏移,而700nm附近反射峰向长波方向偏移。用这2个反射峰峰值的差值作为参数建立的滇池水体叶绿素a浓度估测模型,其精度较高;HSV变换融合MODIS遥感影像的假彩色合成图能直观反演滇池水体叶绿素a浓度的空间分布。  相似文献   

4.
流域水体溶解性有机碳是碳循环的重要组成部分。本研究以太湖流域气象数据、遥感反演参数和2015年5月的一期Landsat-8 OLI_TIRS卫星数字影像为基础,分析Landsat水质模型反演数据和太湖水体溶解性有机质(DOM)各参数的相关性,阐明湖水DOM来源及不同来源DOM特性。结果表明:以Landsat红光波段、近红外波段和蓝光波段为基础反演的叶绿素a浓度、蓝藻密度、透明度和浊度等水质参数和遥感水质监测中归一化悬浮物指数均与太湖水体DOC浓度分布一致,且DOM主要为内生源;依据Landsat影像对太湖子流域进行土地利用监督分类,表明流域土地利用/覆被方式是影响类蛋白物质含量、芳香度等的重要因素。研究证实,遥感反演是获取水体有机质信息的重要数据来源,可靠性强并能够表征DOM来源、性质及影响程度,是理解环境碳循环的重要技术手段,也为太湖流域的碳库计算、水体生态风险评价、流域生态环境变化等监测提供了参考。  相似文献   

5.
基于MODIS数据的云南九大高原湖泊叶绿素a浓度反演   总被引:2,自引:0,他引:2  
叶绿素a浓度是反映水体富营养化程度的重要参数。本研究以MODIS卫星影像为数据源,结合地面实测数据,实现了对云南省九大高原湖泊的叶绿素a浓度反演。首先,以2010—2012年的叶绿素a浓度实测数据为基础,对MODIS不同波段的地表辐射率进行了组合试验,优选出九湖叶绿素a浓度的统计模型。其次,利用2013—2014年的叶绿素a浓度实测数据对反演模型进行了验证。最后,利用优选模型对九湖叶绿素a的空间分布特征和变化动态进行分析。结果表明:获取的九湖叶绿素a浓度的空间分布比较符合专业人员的判断,结果较为合理;滇池、洱海、程海、杞麓湖、星云湖、异龙湖和阳宗海的叶绿素a浓度周围高,中部低,抚仙湖和泸沽湖则为周围低,中部高;从年际变化看,2010—2014年期间,滇池、洱海、星云湖和异龙湖叶绿素a浓度年际波动幅度较大,抚仙湖、程海、杞麓湖和泸沽湖变化较为稳定,阳宗海呈减少趋势。  相似文献   

6.
由于近岸河口地区水体复杂的光学特性, 以往大洋一类水体的叶绿素a 反演方法已不再适用。为提高河口及近岸海域水体叶绿素a 浓度反演精度, 具体从水体组分复杂性和光谱响应差异性两个方面描述河口及近岸水体光学特性的不确定性; 分析影响河口及近海水体叶绿素a 浓度反演精度的关键因素, 总结归纳近十年来水体光谱数据处理方法及河口及近岸海域水体叶绿素a 浓度遥感反演方法; 最后从反演算法、数据处理和算法体系三个方面, 对河口及近岸浑浊水体提高反演叶绿素精度提出几点展望。  相似文献   

7.
太湖梅梁湾沿岸带水体生物学与光学特性   总被引:4,自引:0,他引:4  
基于 1998~ 1999年周年 4季原位水下光场观测资料及中国科学院太湖湖泊生态系统研究站 1992~ 2 0 0 1年悬浮物、叶绿素 a、透明度长期历史观测资料分析了太湖梅梁湾沿岸带第 2号站点水体的生物学与光学特性 ,探讨了水下光合有效辐射(PAR)总量的日变化、垂直分布 ;光衰减系数的季节变化及光谱分布 ;影响光衰减系数的主要水色因子。结果表明 ,无论是 PAR还是光谱衰减系数其值都很高 ,其中 PAR衰减系数在 1.4 0~ 5 .30 / m间变化 ,均值为 2 .4 3± 0 .5 5 / m,秋季最大、夏季最小 ,真光层深度在 0 .87~ 3.2 9m间变化 ,均值为 1.98± 0 .4 1m;水下光谱在蓝光波段衰减最强烈 ,其次是红光、绿光 ,随着深度增加光谱成分出现绿移和红移现象 ,绿红光占得比例越来越大 ;光谱衰减系数随着波长的增加大致呈下降趋势 ,但在 6 70 nm附近有个峰值 ;基于线性相关分析发现在混浊的沿岸带水体中影响光衰减主要因子为水体中的悬浮物和有色可溶性有机物 ,叶绿素 a对 PAR衰减系数的贡献率只占到 1.5 9%~ 14 .2 1%。  相似文献   

8.
基于小波理论的干旱区内陆湖泊叶绿素a的TM影像遥感反演   总被引:3,自引:0,他引:3  
史锐  张红  岳荣  张霄羽  王美萍  石伟 《生态学报》2017,37(3):1043-1053
叶绿素a(Chl-a)是衡量湖泊富营养化的重要指标,利用遥感技术动态监测面积较大的湖区水体中Chl-a浓度对了解湖区水质具有重要意义。以内蒙古乌梁素海为例,提出利用TM影像中的水体实测光谱进行小波去噪和光谱信号重构,并结合水质采样实测数据进行神经网络拟合,建立光谱反射率比值与Chl-a浓度的反演模型的方法。结果显示:小波理论和神经网络相结合的模型可以适用于估算乌梁素海Chl-a浓度,去噪后Chl-a浓度与光谱信号的相关系数(-0.575)较去噪前(-0.417)明显增强,去噪后的采样点光谱信号与Chl-a浓度之间表现出比原始信号更强的负相关性,证明了去噪后的观测值可进一步减弱随机误差的干扰和去除噪声,使观测数据更加逼近Chl-a浓度的真实情况,图像去噪重构结果显示重构后的光谱范围较之前有所缩窄,部分信号点得到了增强,但基本剖面结构并没有产生较大变化,反演模型的平均相对误差为0.142,与其他研究相比差别不大。反演得出的乌梁素海Chl-a浓度分布反映了污染源的分布,同时说明了乌梁素海Chl-a浓度在时空分布上呈现一定的差异,表现为丰水期呈现浅水区Chl-a浓度值高于湖心区,来水区高于其他湖区的分布趋势,枯水期乌梁素海中部呈现由西向东Chl-a浓度逐步降低的分布规律,西部呈均一化分布。反演模型基本可以满足实际预测的需要。但模型在具体应用中在影像数据采集、数据量及算法方面还有很大的改进空间,该方法的提出为干旱区大型内陆水体富营养化的实时定量遥感监测提供了新的解决方案。  相似文献   

9.
真光层深度的遥感反演及其在富营养化评价中的应用   总被引:2,自引:0,他引:2  
乐成峰  李云梅  查勇  孙德勇  王莉珍 《生态学报》2008,28(6):2614-2614~2621
真光层深度直接影响水体中浮游植物的分布和初级生产力以及水体生态环境,是水生态研究的一个重要参数.利用2006年10月24日~11月2日太湖水下实测光谱数据和光合有效辐射(PAR)数据,通过数据的处理和分析,尝试建立真光层深度与水面以下遥感反射率的关系模型,并利用真光层深度与透明度的关系,建立水体富营养化真光层深度评价模型.研究结果表明:真光层深度与归一化遥感反射率具有很好的相关性;选用特定波段的归一化反射率作为变量,建立两者的关系模型能较好的反演真光层深度,所建立的模型算法中,指数模型拟合方程的综合效果好于其他模型,波段比值算法反演精度要好于单波段算法;利用利用真光层深度进行富营养化评价具有一定的应用价值,利用该模型对太湖水体进行富营养化评价,得出太湖西部湖区大部分已富营养化,东部湖区处于中营养化和轻度富营养化状态.  相似文献   

10.
香溪河库湾春季水华期间水体光学特征及相关分析   总被引:11,自引:2,他引:9  
研究了香溪河库湾春季水华期间(2006年3月3日—4月16日)透明度水层可见光衰减系数KSd的时空特征,分析其与表层水叶绿素a浓度、DOC浓度和透明度Sd的相关关系。结果表明:香溪河库湾春季水华可见光衰减系数KSd时空变异很大;除峡口河段(样点X7—X8)外,可见光衰减系数KSd的变化特征取决于叶绿素a浓度和DOC浓度的时空变化,类似于深水湖泊;除峡口河段(样点X7—X8)外,香溪河库湾可见光衰减系数KSd和透明度之间呈反比的关系具有显著的相关,但它们之间的反比关系因水体叶绿素a和无机悬浮颗粒的空间差异而有所不同。    相似文献   

11.
基于2013—2017年岱海水质监测数据,分析岱海湖泊叶绿素a浓度时空分布特征,进而通过混合演化算法(HEA)建立湖泊叶绿素a浓度模拟和预测模型,结合生态阈值和敏感性分析,定量揭示和模拟预测湖泊叶绿素a浓度变化及其与环境因子之间的关系。研究表明:(1)岱海富营养化程度的季节变化呈显著性差异,表现为春季显著高于夏季和秋季,但空间变化不具有显著性差异。(2)基于混合演化算法模型的岱海湖泊叶绿素a浓度预测值与实际监测值之间拟合度高(R2=0.95)。(3)混合演化算法的最佳规则集表明,当水体化学需氧量大于172.049 mg·L–1,且水温在13.97—20.36℃的范围内时,岱海湖泊叶绿素a浓度随水温增高而降低,随pH和水深的增高而增高;反之,叶绿素a浓度与总氮和水深均是负相关关系。混合演化算法模型能够模拟和预测湖泊叶绿素a浓度变化,识别和量化湖泊富营养化与环境因子的生态关系和阈值数据,可为干旱半干旱区内陆湖泊藻类水华的预测预警提供一定的理论依据和技术支撑。  相似文献   

12.
基于小波分析的大豆叶绿素a含量高光谱反演模型   总被引:5,自引:0,他引:5       下载免费PDF全文
 2003和2004年分别在长春市良种场和中国科学院海伦黑土生态实验站实测了大田耕作与水肥耦合作用下大豆(Glycine max)冠层高光谱反射率 与叶绿素a含量数据,对光谱反射率、微分光谱与叶绿素a含量进行了相关分析;采用归一化植被指数(Normalized diffe rence vegetation index, NDVI)、土壤调和植被指数(Soil-adjusted vegetation index, SAVI)、再归一植被指数(Renormalized difference vegetation index, RDVI)、第二修正比值植被指数(Modified second ratio index, MSRI)等建立了大豆叶绿素a反演模型;应用小波分析对采集的光谱反 射率数据进行了能量系数提取,并以小波能量系数作为自变量进行了单变量与多变量回归分析,对大豆叶绿素a进行了估算。研究结果表明,大 豆叶绿素a 与可见光光谱反射率相关性较好,并在红光波段取得最大值(R2>0.70),但在红边处,微分光谱与大豆叶绿素a的相关性较反射率好 得多,在其它波段则相反;由NDVI、SAVI、RDVI、MSRI等植被指数建立的估算模型可以提高大豆叶绿素a的估算精度(R2>0.75);小波能量系 数回归模型可以进一步提高大豆叶绿素a含量的估算水平,以一个特定小波能量系数作为自变量的回归模型,大豆叶绿素a回归决定系数R2高达 0.78;多变量回归分析结果表明,大豆叶绿素a实测值与预测值的线性回归决定系数R2均高达0.85。以上结果表明, 小波分析可以对高光谱进 行特征变量提取,并可在一定程度上提高大豆生理参数反演精度。  相似文献   

13.
基于遥感的官厅水库水质监测研究   总被引:4,自引:0,他引:4  
田野  郭子祺  乔彦超  雷霞  谢飞 《生态学报》2015,35(7):2217-2226
遥感监测具有监测面积广、速度快、成本低等优势,常用于大面积水质监测。以北京官厅水库为研究对象,通过野外和实验室测量数据建立水质参数遥感反演的生物光学模型,对夏季官厅水库的非色素颗粒物浓度、叶绿素a浓度和有色可溶性有机物(CDOM)浓度进行了反演。该模型研究的目的就是通过建立反演模型,利用卫星数据进行水质参数反演,从而得到大面积水体的水质分布图。采用CHRIS/Proba高光谱数据反演官厅水库的水体组分浓度,对库区水质反演要素的空间分布规律进行了分析。结果表明,所采用的遥感反演模型基本适用于官厅水库水质监测,反演出的叶绿素a、总悬浮物和CDOM的空间分布与实际测量值的空间分布基本吻合。  相似文献   

14.
高光谱植被指数以其特有的精细光谱特征,能够获得非常细微的植被生理状况和环境胁迫差异,因而使遥感技术在精细农业中的应用.尤其是在叶绿素浓度和叶面积指数的反演上面有着广阔的应用前景.然而,现有的植被指数往往和这2个参数呈非线性关系,且只对某一区间的数值敏感,无法适用于其它植被覆盖程度的研究.为了寻找合适的波段位置以改善植被指数与叶绿素浓度和叶面积指数的线性关系,去除饱和区域,进而提高这2个参数的实际估算精度,该文选取了叶绿素浓度和叶面积指数,以辐射传输模型PROSPECT和SAIL为基础,模拟了这2个参数变化对3类高光谱植被指数(归一化植被指数(NDVI)、优化的简单比值指数(MSR)和优化的叶绿素吸收率指数(MCARI))的影响.叶绿素浓度变化敏感性分析结果表明,对这3类植被指数而言,750 nm和705 nm的叶片反射率更适合实际的叶绿素浓度反演.以750 nm和705 nm代替800 nm/700 nm和670 nm成功地提高了3类植被指数与叶绿素浓度的线性相关程度,其中MCARI705和叶绿素浓度基本呈线性关系.叶面积指数变化敏感性分析I口j样显示,以750 nm和705 nm组成的植被指数能够获取更可靠的叶面积指数信息,尤其对于高植被覆盖区域.其中MCARI705能较好地降低随叶面积指数变化的饱和程度,相比其它植被指数,当叶面积指数大于8时,MCARI705才出现明显的饱和.由于冠层的尺度效应,波段位置的选择对植被指数与叶面积指数线性关系的改善不及对叶绿素浓度明显.  相似文献   

15.
北京市北环水系富营养化因子分析   总被引:2,自引:0,他引:2  
以北京市北环水系水体为例,利用聚类分析将研究区分为河流子系统和湖泊子系统.因子分析表明,河流子系统第一主成分富营养元素为总磷(TP)、总氮(TN)和氨氮(NH4-N),第二主成分为温度(T)和溶解氧(DO);湖泊子系统第一主成分为总氮和氨氮,第二主成分为总磷、酸碱度(pH)、透明度(SD)和温度,第三主成分为溶解氧和叶绿素a(Chla),表明研究区的水体富营养化主要由富营养盐负荷引起.结合逐步回归分析方法,建立富营养水平预测回归模型,根据模型自变量选择证明河流子系统富营养化特征为磷限制型,湖泊子系统为氮限制型.从水量和水质上对营养盐浓度负荷变化分析表明,研究区年最小生态环境用水为4872×104m3,1990~1998年,除1998年外,现实的生态环境需水均不能满足需求.随着流域人口的不断增长,生活污水、城市径流和固体废弃物淋溶液中营养物质进入水体,研究区营养盐浓度负荷有随时间不断增长的趋势,针对这种趋势提出了应对措施.  相似文献   

16.
吴朝阳    牛铮 《植物学报》2008,25(6):714-721
高光谱植被指数以其特有的精细光谱特征, 能够获得非常细微的植被生理状况和环境胁迫差异, 因而使遥感技术在精细农业中的应用, 尤其是在叶绿素浓度和叶面积指数的反演上面有着广阔的应用前景。然而, 现有的植被指数往往和这2个参数呈非线性关系, 且只对某一区间的数值敏感, 无法适用于其它植被覆盖程度的研究。为了寻找合适的波段位置以改善植被指数与叶绿素浓度和叶面积指数的线性关系, 去除饱和区域, 进而提高这2个参数的实际估算精度, 该文选取了叶绿素浓度和叶面积指数, 以辐射传输模型PROSPECT和SAIL为基础, 模拟了这2个参数变化对3类高光谱植被指数(归一化植被指数(NDVI)、 优化的简单比值指数(MSR)和优化的叶绿素吸收率指数(MCARI))的影响。叶绿素浓度变化敏感性分析结果表明, 对这3类植被指数而言, 750 nm 和705 nm 的叶片反射率更适合实际的叶绿素浓度反演。以750 nm 和705 nm代替 800 nm/700 nm 和670 nm成功地提高了3类植被指数与叶绿素浓度的线性相关程度, 其中MCARI705 和叶绿素浓度基本呈线性关系。叶面积指数变化敏感性分析同样显示, 以750 nm 和705 nm 组成的植被指数能够获取更可靠的叶面积指数信息, 尤其对于高植被覆盖区域。其中MCARI705 能较好地降低随叶面积指数变化的饱和程度, 相比其它植被指数, 当叶面积指数大于8时, MCARI705 才出现明显的饱和。由于冠层的尺度效应, 波段位置的选择对植被指数与叶面积指数线性关系的改善不及对叶绿素浓度明显。  相似文献   

17.
基于深度神经网络算法的水体透明度反演方法   总被引:1,自引:0,他引:1  
喻臻钰  杨昆  罗毅  商春雪  赵磊 《生态学报》2021,41(6):2515-2524
水体透明度能够直观反映湖泊水质状态,掌握长时间大尺度湖泊水体透明度是控制和改善湖泊水生态环境的关键。由于滇池的水质原位监测工作起步较晚,导致长时间序列的历史湖泊水体透明度数据的缺失。为此,以滇池为研究区,以深度神经网络算法为理论基础,以原位监测和MODIS遥感影像为数据,对2001年1月1日—2018年12月31日滇池水体透明度进行反演,并利用地理空间分析方法探讨了滇池湖泊水体透明度时空变化特征。研究结果表明:(1)提出的反演模型具有较好的性能(RMSE=0.1359,MAE=0.1134),能够客观反映湖泊水体透明度状况;(2)时间变化特征分析结果表明,滇池水体透明度总体呈现下降趋势,综合变化率为-0.08 m/10 a;(3)空间变化特征分析结果表明,水体透明度较高的区域下降率较大,水体透明度较低的区域变化趋势相对稳定,距离城区及居民区较近的水体透明度相对较低;人类活动将成为影响滇池水体透明度变化的重要因素,同时也是造成滇池水体污染的主要因素。  相似文献   

18.
湿地小叶章叶绿素含量的高光谱遥感估算模型   总被引:3,自引:0,他引:3  
通过实测不同覆盖度和水深状况下小叶章(Calamagroestis angustifolia)的冠层高光谱反射率与叶绿素a(Chl-a)浓度,采用高光谱可见光-近红外波段及其微分光谱波段(350~1050 nm)逐波段构建FNDVI、FRVI、FDVI、FDNDVI、FDRVI和FDDVI植被指数,分别找出与Chl-a具有最佳相关性波段组合的植被指数,建立小叶章Chl-a含量的最佳估算模型,并对比分析了最佳模型与线性模型的预测精度.结果显示:微分光谱植被指数与Chl-a的最佳预测模型(FDNDVI、FDRVI和FDDVI)比反射率植被指数最佳模型(FNDVI、FRVI和FDVI)的预测精度分别提高了6.86%、4.82%和10.10%;植被指数(FNDVI、FD-VI、FDNDVI和FDRVI)与Chl-a含量具有较好的线性关系,而最佳模型比线性模型预测精度仅仅提高了0.60%、1.40%、1.02%和0.93%,可以用简单的线性模型反演湿地小叶章的Chl-a含量.  相似文献   

19.
叶绿素含量是表征芦苇虫害胁迫状态的一个重要指示因子。选取遭受芦苇粉大尾蚜(Hyalopterus pruni)虫害的芦苇(Phragmites australis)作为研究对象,用便携式地物光谱仪ASD FieldSpec 4测定其叶片反射率光谱,同时用SPAD-502 Plus叶绿素测量仪测定其叶绿素相对含量(SPAD),分析健康和虫害芦苇叶片高光谱反射率与叶绿素含量间的相关关系,采用一元线性回归和偏最小二乘法回归方法,建立芦苇叶绿素含量红边位置和全波段高光谱反演估算模型。结果表明:健康芦苇叶片反射率高于虫害叶片,两种叶片叶绿素含量与高光谱的相关性存在显著差异,尤其在绿光波段和近红外波段部分区域(1400~2500nm)表现明显;全波段高光谱估算模型具有较高的准确性,健康叶片回归模型的决定系数(R2)为0.965,均方根误差(RMSE)为0.813,预测偏差比率(RPD)为3.940;虫害叶片回归模型的R2为0.966,RMSE为0.989,RPD为3.855;异地验证结果进一步表明,通过高光谱数据全波段反演能较好地估算芦苇粉大尾蚜虫害下芦苇叶绿素相对含量,这也预示着利用高光谱全波段数据估算虫害植被叶绿素相对含量是可行的。  相似文献   

20.
滴水湖叶绿素a时空分布及其与水质因子的关系   总被引:1,自引:0,他引:1  
根据2011年9月-2012年8月监测数据,分析上海市人工湖泊——滴水湖叶绿素a的时空分布及其与主要环境因子的相互关系.结果表明:滴水湖叶绿素a含量随时间的变化幅度较大,表现为3、7月出现高峰而其他月份较低;叶绿素a含量在空间分布上具有一定的分异性,湖心普遍偏高,其他各点相对较低;对滴水湖叶绿素a采用主成分多元线性回归分析(APCS-MLR),得到描述水质因子的潜变量F1、F2与其相关性较大,建立了潜变量与叶绿素a含量的相关性模型;滴水湖叶绿素a含量与溶解氧(DO)、水温、总溶解磷(TDP)、活性磷(AP)有着密切的相关性;磷为滴水湖水体初级生产力的限制因子;因此,磷是有效控制滴水湖水体富营养化的关键因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号