首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinetic and catalytic mechanism of HhaI methyltransferase   总被引:53,自引:0,他引:53  
Kinetic and catalytic properties of the DNA (cytosine-5)-methyltransferase HhaI are described. With poly(dG-dC) as substrate, the reaction proceeds by an equilibrium (or processive) ordered Bi-Bi mechanism in which DNA binds to the enzyme first, followed by S-adenosylmethionine (AdoMet). After methyl transfer, S-adenosylhomocysteine (AdoHcy) dissociates followed by methylated DNA. AdoHcy is a potent competitive inhibitor with respect to AdoMet (Ki = 2.0 microM) and its generation during reactions results in non-linear kinetics. AdoMet and AdoHcy significantly interact with only the substrate enzyme-DNA complex; they do not bind to free enzyme and bind poorly to the methylated enzyme-DNA complex. In the absence of AdoMet, HhaI methylase catalyzes exchange of the 5-H of substrate cytosines for protons of water at about 7-fold the rate of methylation. The 5-H exchange reaction is inhibited by AdoMet or AdoHcy. In the enzyme-DNA-AdoHcy complex, AdoHcy also suppresses dissociation of DNA and reassociation of the enzyme with other substrate sequences. Our studies reveal that the catalytic mechanism of DNA (cytosine-5)-methyltransferases involves attack of the C6 of substrate cytosines by an enzyme nucleophile and formation of a transient covalent adduct. Based on precedents of other enzymes which catalyze similar reactions and the susceptibility of HhaI to inactivation by N-ethylmaleimide, we propose that the sulfhydryl group of a cysteine residue is the nucleophilic catalyst. Furthermore, we propose that Cys-81 is the active-site catalyst in HhaI. This residue is found in a Pro-Cys doublet which is conserved in all DNA (cytosine-5)-methyltransferases whose sequences have been determined to date and is found in related enzymes. Finally, we discuss the possibility that covalent adducts between C6 of pyrimidines and nucleophiles of proteins may be important general components of protein-nucleic acid interactions.  相似文献   

2.
Christian T  Evilia C  Hou YM 《Biochemistry》2006,45(24):7463-7473
The enzyme tRNA(m1G37) methyl transferase catalyzes the transfer of a methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37, which is 3' to the anticodon sequence and whose modification is important for maintaining the reading frame fidelity. While the enzyme in bacteria is highly conserved and is encoded by the trmD gene, recent studies show that the counterpart of this enzyme in archaea and eukarya, encoded by the trm5 gene, is unrelated to trmD both in sequence and in structure. To further test this prediction, we seek to identify residues in the second class of tRNA(m1G37) methyl transferase that are required for catalysis. Such residues should provide mechanistic insights into the distinct structural origins of the two classes. Using the Trm5 enzyme of the archaeon Methanocaldococcus jannaschii (previously MJ0883) as an example, we have created mutants to test many conserved residues for their catalytic potential and substrate-binding capabilities with respect to both AdoMet and tRNA. We identified that the proline at position 267 (P267) is a critical residue for catalysis, because substitution of this residue severely decreases the kcat of the methylation reaction in steady-state kinetic analysis, and the k(chem) in single turnover kinetic analysis. However, substitution of P267 has milder effect on the Km and little effect on the Kd of either substrate. Because P267 has no functional side chain that can directly participate in the chemistry of methyl transfer, we suggest that its role in catalysis is to stabilize conformations of enzyme and substrates for proper alignment of reactive groups at the enzyme active site. Sequence analysis shows that P267 is embedded in a peptide motif that is conserved among the Trm5 family, but absent from the TrmD family, supporting the notion that the two families are descendants of unrelated protein structures.  相似文献   

3.
The T-arm of tRNA is a substrate for tRNA (m5U54)-methyltransferase   总被引:6,自引:0,他引:6  
X R Gu  D V Santi 《Biochemistry》1991,30(12):2999-3002
Fragments of Escherichia coli FUra-tRNA(1Val) as small as 15 nucleotides form covalent complexes with tRNA (m5U54)-methyltransferase (RUMT). The sequence essential for binding includes position 52 of the T-stem and the T-loop and extends toward the 3' acceptor end of FUra-tRNA. The in vitro synthesized 17mer T-arm of E. coli tRNA(1Val), composed of the seven-base T-loop and 5-base-pair stem, is a good substrate for RUMT. The Km is decreased 5-fold and kcat is decreased 2-fold compared to the entire tRNA. The T-arm structure could be further reduced to an 11mer containing the loop and two base pairs and still retain activity; the Km was similar to that of the 17mer T-arm, whereas kcat was decreased an additional 20-fold. The data indicate that the primary specificity determinants for the RUMT-tRNA interaction are contained within the primary and secondary structure of the T-arm of tRNA.  相似文献   

4.
X Gu  D V Santi 《Biochemistry》1992,31(42):10295-10302
The interaction of tRNA (m5U54)-methyltransferase (RUMT) with in vitro synthesized unmodified tRNA and a 17-base oligoribonucleotide analog of the T-arm of tRNA in the absence of AdoMet has been investigated. Binary complexes are formed which are isolable on nitrocellulose filters and are composed of noncovalent and covalent complexes in nearly equal amounts. The covalent RUMT-RNA complexes are stable to SDS-PAGE and migrate slower than free enzyme or RNA. Kinetic and thermodynamic constants involved in formation and disruption of noncovalent and covalent binary complexes have been determined and interpreted in the context of steady-state kinetic parameters of the enzyme-catalyzed methylation and 5-H exchange of substrate. The results show that the isolable covalent complex is kinetically incompetent as an intermediate for methylation. Isotope trapping experiments show that when AdoMet is added to preformed binary complex, all bound tRNA is converted to methylated product; thus, the covalent complexes are chemically competent to form products. We have concluded that, after a reversible binary complex is formed, the catalytic thiol adds to the 6-carbon of the U54 of tRNA. The initial adduct leaves the reaction pathway to protonation at carbon 5; the latter can deprotonate and re-enter the pathway to form methylated product. It is speculated that covalent binary RUMT-RNA adducts may serve as depots of enzyme-tRNA complexes primed for methylation, or in unknown roles with RNAs other than tRNA.  相似文献   

5.
The bacterial enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) catalyzes the unprecedented transfer and isomerization of the ribosyl moiety of S-adenosylmethionine (AdoMet) to a modified tRNA nucleoside in the biosynthesis of the hypermodified nucleoside queuosine. The complexity of this reaction makes it a compelling problem in fundamental mechanistic enzymology, and as part of our mechanistic studies of the QueA-catalyzed reaction, we report here the elucidation of the steady-state kinetic mechanism. Bi-substrate kinetic analysis gave initial velocity patterns indicating a sequential mechanism, and provided the following kinetic constants: K (M)(tRNA)= 1.9 +/- 0.7 microM and K (M)(AdoMet)= 98 +/- 5.0 microM. Dead-end inhibition studies with the substrate analogues S-adenosylhomocysteine and sinefungin gave competitive inhibition patterns against AdoMet and noncompetitive patterns against preQ(1)-tRNA(Tyr), with K(i) values of 133 +/- 18 and 4.6 +/- 0.5 microM for sinefungin and S-adenosylhomocysteine, respectively. Product inhibition by adenine was noncompetitive against both substrates under conditions with a subsaturating cosubstrate concentration and uncompetitive against preQ(1)-tRNA(Tyr) when AdoMet was saturating. Inhibition by the tRNA product (oQ-tRNA(Tyr)) was competitive and noncompetitive against the substrates preQ(1)-tRNA(Tyr) and AdoMet, respectively. Inhibition by methionine was uncompetitive versus preQ(1)-tRNA(Tyr), but noncompetitive against AdoMet. However, when methionine inhibition was investigated at high AdoMet concentrations, the pattern was uncompetitive. Taken together, the data are consistent with a fully ordered sequential bi-ter kinetic mechanism in which preQ(1)-tRNA(Tyr) binds first followed by AdoMet, with product release in the order adenine, methionine, and oQ-tRNA. The chemical mechanism that we previously proposed for the QueA-catalyzed reaction [Daoud Kinzie, S., Thern, B., and Iwata-Reuyl, D. (2000) Org. Lett. 2, 1307-1310] is consistent with the constraints imposed by the kinetic mechanism determined here, and we suggest that the magnitude of the inhibition constants for the dead-end inhibitors may provide insight into the catalytic strategy employed by the enzyme.  相似文献   

6.
Sequence comparison of several RNA m(5)C methyltransferases identifies two conserved cysteine residues that belong to signature motifs IV and VI of RNA and DNA methyltransferases. While the cysteine of motif IV is used as the nucleophilic catalyst by DNA m(5)C methyltransferases, this role is fulfilled by the cysteine of motif VI in Escherichia coli 16S rRNA m(5)C967 methyltransferase, but whether this conclusion applies to other RNA m(5)C methyltransferases remains to be verified. Yeast tRNA m(5)C methyltransferase Trm4p is a multisite-specific S-adenosyl-L-methionine-dependent enzyme that catalyzes the methylation of cytosine at C5 in several positions of tRNA. Here, we confirm that Cys310 of motif VI in Trm4p is essential for nucleophilic catalysis, presumably by forming a covalent link with carbon 6 of cytosine. Indeed, the enzyme is able to form a stable covalent adduct with the 5-fluorocytosine-containing RNA substrate analog, whereas the C310A mutant protein is inactive and unable to form the covalent complex.  相似文献   

7.
The Dnmt3a DNA methyltransferase is responsible for establishing DNA methylation patterns during mammalian development. We show here that the mouse Dnmt3a DNA methyltransferase is able to transfer the methyl group from S-adenosyl-l-methionine (AdoMet) to a cysteine residue in its catalytic center. This reaction is irreversible and relatively slow. The yield of auto-methylation is increased by addition of Dnmt3L, which functions as a stimulator of Dnmt3a and enhances its AdoMet binding. Auto-methylation was observed in binary Dnmt3a AdoMet complexes. In the presence of CpG containing dsDNA, which is the natural substrate for Dnmt3a, the transfer of the methyl group from AdoMet to the flipped target base was preferred and auto-methylation was not detected. Therefore, this reaction might constitute a regulatory mechanism which could inactivate unused DNA methyltransferases in the cell, or it could simply be an aberrant side reaction caused by the high methyl group transfer potential of AdoMet. ENZYMES: Dnmt3a is a DNA-(cytosine C5)-methyltransferase, EC 2.1.1.37. STRUCTURED DIGITAL ABSTRACT: ? Dnmt3a methylates Dnmt3a by methyltransferase assay (View interaction) ? Dnmt3a and DNMT3L methylate Dnmt3a by methyltransferase assay (View interaction).  相似文献   

8.
tRNA (m5U54)-methyltransferase (RUMT) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the 5-carbon of uridine 54 of tRNA. We have determined the steric course of methyl transfer, using (methyl-R)- and (methyl-S)-[methyl-2H1,3H]-AdoMet as the chiral methyl donors, and tRNA lacking the 5-methyl group at position 54 as the acceptor. Following methyl transfer, ribothymidine was isolated and degraded to chiral acetic acid for configurational analysis. Transfer of the chiral methyl group to U54 proceeded with inversion of configuration of the chiral methyl group, suggesting that RUMT catalyzed methyl transfer occurs by a single SN2 displacement mechanism.  相似文献   

9.
Transfer RNA (Gm18) methyltransferase (TrmH (SpoU)) catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (AdoMet) to the 2'-OH of guanosine 18 in tRNA. This enzyme is a member of the SpoU family of RNA methyltransferases. Recent computational researches have shown that three amino acid sequence motifs are conserved among the SpoU members. Recently, we determined the crystal structures of the apoand AdoMet bound forms of TrmH (Nureki, O., Watanabe, K., Fukai, S., Ishii, R., Endo, Y., Hori, H., and Yokoyama, S. (2004) Structure 12, 593-602). Furthermore, we clarified the AdoMet binding site and proposed the catalytic mechanism. Since the functions of the conserved amino acid residues in the motifs remain unknown, here we have prepared 17 mutants of TrmH and carried out various biochemical studies, including determination of the kinetic parameters for both AdoMet and tRNA, S-adenosyl-l-homocysteine affinity chromatography, gel mobility shift assay, CD spectroscopy, and analytical gel filtration. Our results show that Asn(35), Arg(41), Glu(124), and Asn(152) are involved in binding tRNA and that the Asn(35) residue is involved in the release of S-adenosyl-l-homocysteine. Several residues of TrmH are important for stability of the enzyme. Taken together, our biochemical studies reinforce the previously proposed catalytic mechanism. We also discuss amino acid substitutions in general within the SPOUT superfamily of methyltransferases.  相似文献   

10.
Svedruzić ZM  Reich NO 《Biochemistry》2005,44(27):9472-9485
We followed the cytosine C(5) exchange reaction with Dnmt1 to characterize its preference for different DNA substrates, its allosteric regulation, and to provide a basis for comparison with the bacterial enzymes. We determined that the methyl transfer is rate-limiting, and steps up to and including the cysteine-cytosine covalent intermediate are in rapid equilibrium. Changes in these rapid equilibrium steps account for many of the previously described features of Dnmt1 catalysis and specificity including faster reactions with premethylated DNA versus unmethylated DNA, faster reactions with DNA in which guanine is replaced with inosine [poly(dC-dG) vs poly(dI-dC)], and 10-100-fold slower catalytic rates with Dnmt1 relative to the bacterial enzyme M.HhaI. Dnmt1 interactions with the guanine within the CpG recognition site can prevent the premature release of the target base and solvent access to the active site that could lead to mutagenic deamination. Our results suggest that the beta-elimination step following methyl transfer is not mediated by free solvent. Dnmt1 shows a kinetic lag in product formation and allosteric inhibition with unmethylated DNA that is not observed with premethylated DNA. Thus, we suggest the enzyme undergoes a slow relief from allosteric inhibition upon initiation of catalysis on unmethylated DNA. Notably, this relief from allosteric inhibition is not caused by self-activation through the initial methylation reaction, as the same effect is observed during the cytosine C(5) exchange reaction in the absence of AdoMet. We describe limitations in the Michaelis-Menten kinetic analysis of Dnmt1 and suggest alternative approaches.  相似文献   

11.
A kinetic analysis of MspI DNA methyltransferase (M.MspI) is presented. The enzyme catalyzes methylation of lambda-DNA, a 50-kilobase pair linear molecule with multiple M.MspI-specific sites, with a specificity constant (kcat/KM) of 0.9 x 10(8) M-1 s-1. But the values of the specificity constants for the smaller DNA substrates (121 and 1459 base pairs (bp)) with single methylation target or with multiple targets (sonicated lambda-DNA) were less by an order of magnitude. Product inhibition of the M.MspI-catalyzed methylation reaction by methylated DNA is competitive with respect to DNA and noncompetitive with respect to S-adenosylmethionine (AdoMet). The S-adenosylhomocysteine inhibition of the methylation reaction is competitive with respect to AdoMet and uncompetitive with respect to DNA. The presteady state kinetic analysis showed a burst of product formation when AdoMet was added to the enzyme preincubated with the substrate DNA. The burst is followed by a constant rate of product formation (0.06 mol per mol of enzyme s-1) which is similar to catalytic constants (kcat = approximately 0.056 s-1) measured under steady state conditions. The isotope exchange in chasing the labeled methyltransferase-DNA complex with unlabeled DNA and AdoMet leads to a reduced burst as compared with the one involving chase with labeled DNA and AdoMet. The enzyme is capable of exchanging tritium at C-5 of target cytosine in the substrate DNA in the absence of cofactor AdoMet. The kinetic data are consistent with an ordered Bi Bi mechanism for the M.MspI-catalyzed DNA methylation where DNA binds first.  相似文献   

12.
The enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase catalyzes the penultimate step in the biosynthesis of the hypermodified tRNA nucleoside queuosine (Q), an unprecedented ribosyl transfer from the cofactor S-adenosylmethionine (AdoMet) to a modified-tRNA precursor to generate epoxyqueuosine (oQ). The complexity of the reaction makes it an especially interesting mechanistic problem, and as a foundation for detailed kinetic and mechanistic studies we have carried out the basic characterization of the enzyme. Importantly, to allow for the direct measurement of oQ formation, we have developed protocols for the preparation of homogeneous substrates; specifically, an overexpression system was constructed for tRNA(Tyr) in an E. coli queA deletion mutant to allow for the isolation of large quantities of substrate tRNA, and [U-ribosyl-(14)C]AdoMet was synthesized. The enzyme shows optimal activity at pH 8.7 in buffers containing various oxyanions, including acetate, carbonate, EDTA, and phosphate. Unexpectedly, the enzyme was inhibited by Mg(2+) and Mn(2+) in millimolar concentrations. The steady-state kinetic parameters were determined to be K(m)(AdoMet) = 101.4 microm, K(m)(tRNA) = 1.5 microm, and k(cat) = 2.5 min(-1). A short minihelix RNA was synthesized and modified with the precursor 7-aminomethyl-7-deazaguanine, and this served as an efficient substrate for the enzyme (K(m)(RNA) = 37.7 microm and k(cat) = 14.7 min(-1)), demonstrating that the anticodon stem-loop is sufficient for recognition and catalysis by QueA.  相似文献   

13.
J T Kealey  D V Santi 《Biochemistry》1991,30(40):9724-9728
A covalent complex between tRNA (m5U54)methyltransferase, 5-fluorouridine tRNA(Phe), and S-adenosyl-L-[methyl-3H]methionine was formed in vitro and purified. Previously, it was shown that in this complex the 6-position of fluorouridine-54 is covalently linked to a catalytic nucleophile and the 5-position is bound to the transferred methyl group of AdoMet [Santi, D. V., & Hardy, L. W. (1987) Biochemistry 26, 8599-8606]. Proteolysis of the complex generated a [3H]methyl-FUtRNA-bound peptide, which was purified by 7 M urea-15% polyacrylamide gel electrophoresis. The peptide component of the complex was sequenced by gas-phase Edman degradation and found to contain two cysteines. The tritium was shown to be associated with Cys 324 of the methyltransferase, which unequivocally identifies this residue as the catalytic nucleophile.  相似文献   

14.
K L Graves  M M Butler  L W Hardy 《Biochemistry》1992,31(42):10315-10321
The proposed roles of Cys148 and Asp179 in deoxycytidylate (dCMP) hydroxymethylase (CH) have been tested using site-directed mutagenesis. CH catalyzes the formation of 5-(hydroxymethyl)-dCMP, essential for DNA synthesis in phage T4, from dCMP and methylenetetrahydrofolate. CH resembles thymidylate synthase (TS), an enzyme of known three-dimensional structure, in both amino acid sequence and the reaction catalyzed. Conversion of Cys148 to Asp, Gly, or Ser decreases CH activity at least 10(5)-fold, consistent with a nucleophilic role for Cys148 (analogous to the catalytic Cys residue in TS). In crystalline TS, hydrogen bonds connect O4 and N3 of the substrate dUMP to the side-chain amide of an Asn; the corresponding residue in CH is Asp179. Conversion of Asp179 to Asn reduces the value of kcat/KM for dCMP by (1.5 x 10(4))-fold and increases the value of kcat/KM for dUMP by 60-fold; as a result, CH(D179N) has a slight preference for dUMP. Wild-type CH and CH(D179N) are covalently inactivated by 5-fluoro-dUMP, a mechanism-based inactivator of TS. Asp179 is proposed to stabilize covalent catalytic intermediates, by protonating N3 of the pyrimidine-CH adduct.  相似文献   

15.
Iwig DF  Grippe AT  McIntyre TA  Booker SJ 《Biochemistry》2004,43(42):13510-13524
Cyclopropane fatty acid (CFA) synthases catalyze the formation of cyclopropane rings on unsaturated fatty acids (UFAs) that are natural components of membrane phospholipids. The methylene carbon of the cyclopropane ring derives from the activated methyl group of S-adenosyl-L-methionine (AdoMet), affording S-adenosyl-L-homocysteine (AdoHcys) and a proton as the remaining products. This reaction is unique among AdoMet-dependent enzymes, because the olefin of the UFA substrate is isolated and unactivated toward nucleophilic or electrophilic addition, raising the question as to the timing and mechanism of proton loss from the activated methyl group of AdoMet. Two distinct reaction schemes have been proposed for this transformation; however, neither was based on detailed in vitro mechanistic analysis of the enzyme. In the preceding paper [Iwig, D. F. and Booker, S. J. (2004) Biochemistry 43, http://dx.doi.org/10.1021/bi048693+], we described the synthesis of two analogues of AdoMet, Se-adenosyl-L-selenomethionine (SeAdoMet) and Te-adenosyl-L-telluromethionine (TeAdoMet), and their intrinsic reactivity toward polar chemistry in which AdoMet is known to be involved. We found that the electrophilicity of AdoMet and its onium congeners followed the series SeAdoMet > AdoMet > TeAdoMet, while the acidity of the carbons adjacent to the relevant heteroatom followed the series AdoMet > SeAdoMet > TeAdoMet. When each of these compounds was used as the methylene donor in the CFA synthase reaction, the kinetic parameters of the reaction, k(cat) and k(cat) K(M)(-1), followed the series SeAdoMet > AdoMet > TeAdoMet, suggesting that the reaction takes place via methyl transfer followed by proton loss, rather than by processes that are initiated by proton abstraction from AdoMet. Use of S-adenosyl-L-[methyl-d(3)]methionine as the methylene donor resulted in an inverse isotope effect of 0.87 +/- 0.083, supporting this conclusion and also indicating that the methyl transfer takes place via a tight s(N)2 transition state.  相似文献   

16.
Jackman JE  Phizicky EM 《Biochemistry》2008,47(16):4817-4825
The yeast tRNA(His) guanylyltransferase (Thg1) is an essential enzyme in yeast. Thg1 adds a single G residue to the 5' end of tRNA(His) (G(-1)), which serves as a crucial determinant for aminoacylation of tRNA(His). Thg1 is the only known gene product that catalyzes the 3'-5' addition of a single nucleotide via a normal phosphodiester bond, and since there is no identifiable sequence similarity between Thg1 and any other known enzyme family, the mechanism by which Thg1 catalyzes this unique reaction remains unclear. We have altered 29 highly conserved Thg1 residues to alanine, and using three assays to assess Thg1 catalytic activity and substrate specificity, we have demonstrated that the vast majority of these highly conserved residues (24/29) affect Thg1 function in some measurable way. We have identified 12 Thg1 residues that are critical for G(-1) addition, based on significantly decreased ability to add G(-1) to tRNA(His) in vitro and significant defects in complementation of a thg1Delta yeast strain. We have also identified a single Thg1 alteration (D68A) that causes a dramatic decrease in the rigorous specificity of Thg1 for tRNA(His). This single alteration enhances the k(cat)/K(M) for ppp-tRNA(Phe) by nearly 100-fold relative to that of wild-type Thg1. These results suggest that Thg1 substrate recognition is at least in part mediated by preventing recognition of incorrect substrates for nucleotide addition.  相似文献   

17.
18.
Aclacinomycin 10-hydroxylase is a methyltransferase homologue that catalyzes a S-adenosyl-L-methionine (AdoMet)-dependent hydroxylation of the C-10 carbon atom of 15-demethoxy-epsilon-rhodomycin, a step in the biosynthesis of the polyketide antibiotic beta-rhodomycin. S-Adenosyl-L-homocysteine is an inhibitor of the enzyme, whereas the AdoMet analogue sinefungin can act as cofactor, indicating that a positive charge is required for catalysis. 18O2 experiments show that the hydroxyl group is derived from molecular oxygen. The reaction further requires thiol reagents such as glutathione or dithiothreitol. Incubation of the enzyme with substrate in the absence of reductant leads to the accumulation of an intermediate with a molecular mass consistent with a perhydroxy compound. This intermediate is turned into product upon addition of glutathione. The crystal structure of an abortive enzyme-AdoMet product ternary complex reveals large conformational changes consisting of a domain rotation leading to active site closure upon binding of the anthracycline ligand. The data suggest a mechanism where decarboxylation of the substrate results in the formation of a carbanion intermediate, which is stabilized by resonance through the aromatic ring system of the anthracycline substrate. The delocalization of the electrons is facilitated by the positive charge of the cofactor AdoMet. The activation of oxygen and formation of a hydroxyperoxide intermediate occurs in a manner similar to that observed in flavoenzymes. Aclacinomycin-10-hydroxylase is the first example of a AdoMet-dependent hydroxylation reaction, a novel function for this cofactor. The enzyme lacks methyltransferase activity due to the positioning of the AdoMet methyl group unfavorable for a SN2-type methyl transfer to the substrate.  相似文献   

19.
T A Alston  R H Abeles 《Biochemistry》1987,26(13):4082-4085
L-Histidine methyl ester inactivates histidine decarboxylase in a time-dependent manner. The possibility was considered that an irreversible reaction between enzyme and inhibitor occurs [Recsei, P. A., & Snell, E. E. (1970) Biochemistry 9, 1492-1497]. We have confirmed time-dependent inactivation by histidine methyl ester and have investigated the structure of the enzyme-inhibitor complex. Upon exposure to either 8 M guanidinium chloride or 6% trichloroacetic acid, unchanged histidine methyl ester is recovered. Formation of the complex involves Schiff base formation, most likely with the active site pyruvyl residue [Huynh, Q. K., & Snell, E. E. (1986) J. Biol. Chem. 261, 4389-4394], but does not involve additional irreversible covalent interaction between inhibitor and enzyme. Complex formation is a two-step process involving rapidly reversible formation of a loose complex and essentially irreversible formation of a tight complex. For the formation of the tight complex, Ki = 80 nM and koff = 2.5 X 10(-4) min-1. Time-dependent inhibition was also observed with L-histidine ethyl ester, L-histidinamide, and DL-3-amino-4-(4-imidazolyl)-2-butanone. No inactivation was observed with glycine methyl ester or histamine. We propose that in the catalytic reaction the carboxyl group of the substrate is in a hydrophobic region. The unfavorable interaction between the carboxylate group and the hydrophobic region facilitates decarboxylation [Crosby, J., Stone, R., & Liehard, G. E. (1970) J. Am. Chem. Soc. 92, 2891-2900]. With histidine methyl ester this unfavorable interaction is no longer present; hence, there is tight binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号