首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Covalent adducts between tRNA (m5U54)-methyltransferase and RNA substrates.
Authors:X Gu  D V Santi
Institution:Department of Biochemistry and Biophysics, University of California, San Francisco 94143.
Abstract:The interaction of tRNA (m5U54)-methyltransferase (RUMT) with in vitro synthesized unmodified tRNA and a 17-base oligoribonucleotide analog of the T-arm of tRNA in the absence of AdoMet has been investigated. Binary complexes are formed which are isolable on nitrocellulose filters and are composed of noncovalent and covalent complexes in nearly equal amounts. The covalent RUMT-RNA complexes are stable to SDS-PAGE and migrate slower than free enzyme or RNA. Kinetic and thermodynamic constants involved in formation and disruption of noncovalent and covalent binary complexes have been determined and interpreted in the context of steady-state kinetic parameters of the enzyme-catalyzed methylation and 5-H exchange of substrate. The results show that the isolable covalent complex is kinetically incompetent as an intermediate for methylation. Isotope trapping experiments show that when AdoMet is added to preformed binary complex, all bound tRNA is converted to methylated product; thus, the covalent complexes are chemically competent to form products. We have concluded that, after a reversible binary complex is formed, the catalytic thiol adds to the 6-carbon of the U54 of tRNA. The initial adduct leaves the reaction pathway to protonation at carbon 5; the latter can deprotonate and re-enter the pathway to form methylated product. It is speculated that covalent binary RUMT-RNA adducts may serve as depots of enzyme-tRNA complexes primed for methylation, or in unknown roles with RNAs other than tRNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号