首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Methylation of the exocyclic amino group of guanine is a relatively common modification in rRNA and tRNA. Single methylation (N2-methylguanosine, m2G) is the second most frequently encountered nucleoside analog in Escherichia coli rRNAs. The most prominent case of dual methylation (N2,N2-dimethylguanosine, m22G) is found in the majority of eukaryotic tRNAs at base pair m22G26:A44. The latter modification eliminates the ability of the N2 function to donate in hydrogen bonds and alters its pairing behavior, notably vis-à-vis C. Perhaps a less obvious consequence of the N2,N2-dimethyl modification is its role in controlling the pairing modes between G and A. We have determined the crystal structure of a 13-mer RNA duplex with central tandem m22G:A pairs. In the structure both pairs adopt an imino-hydrogen bonded, pseudo-Watson–Crick conformation. Thus, the sheared conformation frequently seen in tandem G:A pairs is avoided due to a potential steric clash between an N2-methyl group and the major groove edge of A. Additionally, for a series of G:A containing self-complementary RNAs we investigated how methylation affects competitive hairpin versus duplex formation based on UV melting profile analysis.  相似文献   

2.
To investigate the mutation mechanism of purine transitions in DNA damaged with methoxyamine, a DNA dodecamer with the sequence d(CGCAAATTmo4CGCG), where mo4C is 2′-deoxy-N4-methoxycytidine, has been synthesized and the crystal structure determined by X-ray analysis. The duplex structure is similar to that of the original undamaged B-form dodecamer, indicating that the methoxylation does not affect the overall DNA conformation. Electron density maps clearly show that the two mo4C residues form Watson–Crick-type base pairs with the adenine residues of the opposite strand and that the methoxy groups of mo4C adopt the anti conformation to N3 around the C4–N4 bond. For the pair formation through hydrogen bonds the mo4C residues are in the imino tautomeric state. Together with previous work, the present work establishes that the methoxylated cytosine residue can present two alternate faces for Watson–Crick base-pairing, thanks to the aminoimino tautomerism allowed by methoxylation. Based on this property, two gene transition routes are proposed.  相似文献   

3.
Helix 42 of Domain II of Escherichia coli 23S ribosomal RNA underlies the L7/L12 stalk in the ribosome and may be significant in positioning this feature relative to the rest of the 50S ribosomal subunit. Unlike the Haloarcula marismortui and Deinococcus radiodurans examples, the lower portion of helix 42 in E.coli contains two consecutive G•A oppositions with both adenines on the same side of the stem. Herein, the structure of an analog of positions 1037–1043 and 1112–1118 in the helix 42 region is reported. NMR spectra and structure calculations support a cis Watson–Crick/Watson–Crick (cis W.C.) G•A conformation for the tandem (G•A)2 in the analog and a minimally perturbed helical duplex stem. Mg2+ titration studies imply that the cis W.C. geometry of the tandem (G•A)2 probably allows O6 of G20 and N1 of A4 to coordinate with a Mg2+ ion as indicated by the largest chemical shift changes associated with the imino group of G20 and the H8 of G20 and A4. A cross-strand bridging Mg2+ coordination has also been found in a different sequence context in the crystal structure of H.marismortui 23S rRNA, and therefore it may be a rare but general motif in Mg2+ coordination.  相似文献   

4.
A DNA fragment d(GCGAAAGCT), known to adopt a stable mini-hairpin structure in solution, has been crystallized in the space group I4122 with the unit-cell dimensions a = b = 53.4 Å and c = 54.0 Å, and the crystal structure has been determined at 2.5 Å resolution. The four nucleotide residues CGAA of the first half of the oligomer form a parallel duplex with another half through the homo base pairs, C2:C2+ (singly-protonated between the Watson– Crick sites), G3:G3 (between the minor groove sites), A4:A4 (between the major groove sites) and A5:A5 (between the Watson–Crick sites). The two strands remaining in the half of the parallel duplex are split away in different directions, and they pair in an anti-parallel B-form duplex with the second half extending from a neighboring parallel duplex, so that an infinite column is formed in a head-to-tail fashion along the c-axis. It seems that a hexa-ammine cobalt cation supports such a branched and bent conformation of the oligomer. One end of the parallel duplex is stacked on the corresponding end of the adjacent parallel duplex; between them, the guanine base of the first residue is stacked on the fourth ribose of another duplex.  相似文献   

5.
The crystal structure of an alternating RNA heptamer r(GUAUACA) has been determined to 2.0 Å resolution and refined to an Rwork of 17.1% and Rfree of 18.5% using 2797 reflections. The heptamer crystallized in the space group C222 with a unit cell of a = 25.74, b = 106.58, c = 30.26 Å and two independent strands in the asymmetric unit. Each heptamer forms a duplex with its symmetry-related strand and each duplex contains six Watson–Crick base pairs and 3′-end adenosine overhangs. Therefore, two kinds of duplex (duplex 1 and duplex 2) are formed. Duplexes 1 stack on each other forming a pseudo-continuous column, which is typical of the RNA packing mode, while duplex 2 is typical of A-DNA packing with its termini in abutting interactions. Overhang adenine residues stack within the duplexes with C3′-endo sugar pucker and C2′-endo sugar pucker in duplexes 1 and 2, respectively. A Na+ ion in the crystal lattice is water bridged to two N1 atoms of symmetry-related A7 bases.  相似文献   

6.
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.  相似文献   

7.
Coralyne is an alkaloid drug that binds homo-adenine DNA (and RNA) oligonucleotides more tightly than it does Watson–Crick DNA. Hud’s laboratory has shown that poly(dA) in the presence of coralyne forms an anti-parallel duplex, however attempts to determine the structure by NMR spectroscopy and X-ray crystallography have been unsuccessful. Assuming adenine–adenine hydrogen bonding between the two poly(dA) strands, we constructed 40 hypothetical homo-(dA) anti-parallel duplexes and docked coralyne into the six most favorable duplex structures. The two most stable structures had trans glycosidic bonds, but distinct pairing geometries, i.e. either Watson–Crick Hoogsteen (transWH) or Watson–Crick Watson–Crick (transWW) with stability of transWH > transWW. To narrow down the possibilities, 7-deaza adenine base substitutions (dA→7) were engineered into homo-(dA) sequences. These substitutions significantly reduced the thermal stability of the coralyne-induced homo-(dA) structure. These experiments strongly suggest the involvement of N7 in the coralyne-induced A·A base pairs. Moreover, due to the differential effect on melting as a function of the location of the dA→7 mutations, these results are consistent with the N1–N7 base pairing of the transWH pairs. Together, the simulation and base substitution experiments predict that the coralyne-induced homo-(dA) duplex structure adopts the transWH geometry.  相似文献   

8.
Some regions of nucleic acid targets are not accessible to heteroduplex formation with complementary oligonucleotide probes because they are involved in secondary structure through intramolecular Watson–Crick pairing. The secondary conformation of the target may be destabilised to assist its interaction with oligonucleotide probes. To achieve this, we modified a DNA target, which has self-complementary sequence able to form a hairpin loop, by replacing dC with N4-ethyldeoxycytidine (d4EtC), which hybridises specifically with natural dG to give a G:4EtC base pair with reduced stability compared to the natural G:C base pair. Substitution by d4EtC greatly reduced formation of the target secondary structure. The lower level of secondary structure allowed hybridisation with complementary probes made with natural bases. We confirmed that hybridisation could be further enhanced by modifying the probes with intercalating groups which stabilise the duplex.  相似文献   

9.
Effects of natural isoflavones on the structural competition of human telomeric G-quadruplex d[AG3(T2AG3)3] and its related Watson–Crick duplex d[AG3(T2AG3)3-(C3TA2)3C3T] are investigated by using circular dichroism (CD), ESI-MS, fluorescence quenching measurement, CD stopped-flow kinetic experiment, UV spectroscopy and molecular modeling methods. It is intriguing to find out that isoflavones can stabilize the G-quadruplex structure but destabilize its corresponding Watson–Crick duplex and this discriminated interaction is intensified by molecular crowding environments. Kinetic experiments indicate that the dissociation rate of quadruplex (kobs290 nm) is decreased by 40.3% at the daidzin/DNA molar ratio of 1.0 in K+, whereas in Na+ the observed rate constant is reduced by about 12.0%. Furthermore, glycosidic daidzin significantly induces a structural transition of the polymorphic G-quadruplex into the antiparallel conformation in K+. This is the first report on the recognition of isoflavones with conformational polymorphism of G-quadruplex, which suggests that natural isoflavone constituents potentially exhibit distinct regulation on the structural competition of quadruplex versus duplex in human telomeric DNA.  相似文献   

10.
Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson–Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson–Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson–Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3′ or 5′ of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.  相似文献   

11.
Kan ZY  Lin Y  Wang F  Zhuang XY  Zhao Y  Pang DW  Hao YH  Tan Z 《Nucleic acids research》2007,35(11):3646-3653
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson–Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.  相似文献   

12.
We present evidence of formation of an intramolecular parallel triple helix with T•A.T and G•G.C base triplets (where • represents the hydrogen bonding interaction between the third strand and the duplex while . represents the Watson–Crick interactions which stabilize the duplex). The third GT strand, containing seven GpT/TpG steps, targets the polypurine sequence 5′-AGG-AGG-GAG-GAG-3′. The triple helix is obtained by the folding back twice of a 36mer, formed by three dodecamers tethered by hydroxyalkyl linkers (-L-). Due to the design of the oligonucleotide, the third strand orientation is parallel with respect to the polypurine strand. Triple helical formation has been studied in concentration conditions in which native gel electrophoresis experiments showed the absence of intermolecular structures. Circular dichroism (CD) and UV spectroscopy have been used to evidence the triplex structure. A CD spectrum characteristic of triple helical formation as well as biphasic UV and CD melting curves have been obtained in high ionic strength NaCl solutions in the presence of Zn2+ ions. Specific interactions with Zn2+ ions in low water activity conditions are necessary to stabilize the parallel triplex.  相似文献   

13.
The resolution of the dimeric intermolecular G-quadruplex/duplex competition of the telomeric DNA sequence 5′-TAG GGT TAG GGT-3′ and of its complementary 5′ ACC CTA ACC CTA-3′ is reported. To achieve this goal, melting experiments of both sequences and of the mixtures of these sequences were monitored by molecular absorption, molecular fluorescence and circular dichroism spectroscopies. Molecular fluorescence measurements were carried out using molecular beacons technology, in which the 5′-TAG GGT TAG GGT-3′ sequence was labelled with a fluorophore and a quencher at the ends of the strand. Mathematical analysis of experimental spectroscopic data was performed by means of multivariate curve resolution, allowing the calculation of concentration profiles and pure spectra of all resolved structures (dimeric antiparallel and parallel G-quadruplexes, Watson–Crick duplex and single strands) present in solution. Our results show that parallel G-quadruplex is more stable than antiparallel G-quadruplex. When the complementary C-rich strand is present, a mixture of both G-quadruplex structures and Watson–Crick duplex is observed, the duplex being the major species. In addition to melting temperatures, equilibrium constants for the parallel/antiparallel G-quadruplex equilibrium and for the G-quadruplex/duplex equilibrium were determined from the concentration profiles.  相似文献   

14.
An imidazole-containing polyamide trimer, f-ImImIm, where f is a formamido group, was recently found using NMR methods to recognize T·G mismatched base pairs. In order to characterize in detail the T·G recognition affinity and specificity of imidazole-containing polyamides, f-ImIm, f-ImImIm and f-PyImIm were synthesized. The kinetics and thermodynamics for the polyamides binding to Watson–Crick and mismatched (containing one or two T·G, A·G or G·G mismatched base pairs) hairpin oligonucleotides were determined by surface plasmon resonance and circular dichroism (CD) methods. f-ImImIm binds significantly more strongly to the T·G mismatch-containing oligonucleotides than to the sequences with other mismatched or with Watson–Crick base pairs. Compared with the Watson–Crick CCGG sequence, f-ImImIm associates more slowly with DNAs containing T·G mismatches in place of one or two C·G base pairs and, more importantly, the dissociation rate from the T·G oligonucleotides is very slow (small kd). These results clearly demonstrate the binding selectivity and enhanced affinity of side-by-side imidazole/imidazole pairings for T·G mismatches and show that the affinity and specificity increase arise from much lower kd values with the T·G mismatched duplexes. CD titration studies of f-ImImIm complexes with T·G mismatched sequences produce strong induced bands at ~330 nm with clear isodichroic points, in support of a single minor groove complex. CD DNA bands suggest that the complexes remain in the B conformation.  相似文献   

15.
The transmission of genetic information relies on Watson–Crick base pairing between nucleoside phosphates and template bases in template–primer complexes. Enzyme-free primer extension is the purest form of the transmission process, without any chaperon-like effect of polymerases. This simple form of copying of sequences is intimately linked to the origin of life and provides new opportunities for reading genetic information. Here, we report the dissociation constants for complexes between (deoxy)nucleotides and template–primer complexes, as determined by nuclear magnetic resonance and the inhibitory effect of unactivated nucleotides on enzyme-free primer extension. Depending on the sequence context, Kd′s range from 280 mM for thymidine monophosphate binding to a terminal adenine of a hairpin to 2 mM for a deoxyguanosine monophosphate binding in the interior of a sequence with a neighboring strand. Combined with rate constants for the chemical step of extension and hydrolytic inactivation, our quantitative theory explains why some enzyme-free copying reactions are incomplete while others are not. For example, for GMP binding to ribonucleic acid, inhibition is a significant factor in low-yielding reactions, whereas for amino-terminal DNA hydrolysis of monomers is critical. Our results thus provide a quantitative basis for enzyme-free copying.  相似文献   

16.

Background

Cytosine- and guanine-rich regions of DNA are capable of forming complex structures named i-motifs and G-quadruplexes, respectively. In the present study the solution equilibria at nearly physiological conditions of a 34-base long cytosine-rich sequence and its complementary guanine-rich strand corresponding to the first intron of the n-myc gene were studied. Both sequences, not yet studied, contain a 12-base tract capable of forming stable hairpins inside the i-motif and G-quadruplex structures, respectively.

Methods

Spectroscopic, mass spectrometry and separation techniques, as well as multivariate data analysis methods, were used to unravel the species and conformations present.

Results

The cytosine-rich sequence forms two i-motifs that differ in the protonation of bases located in the loops. A stable Watson–Crick hairpin is formed by the bases in the first loop, stabilizing the i-motif structure. The guanine-rich sequence adopts a parallel G-quadruplex structure that is stable throughout the pH range 3–7, despite the protonation of cytosine and adenine bases at lower pH values. The presence of G-quadruplex aggregates was confirmed using separation techniques. When mixed, G-quadruplex and i-motif coexist with the Watson–Crick duplex across a pH range from approximately 3.0 to 6.5.

Conclusions

Two cytosine- and guanine-rich sequences in n-myc gene may form stable i-motif and G-quadruplex structures even in the presence of long loops. pH modulates the equilibria involving the intramolecular structures and the intermolecular Watson–Crick duplex.

General significance

Watson–Crick hairpins located in the intramolecular G-quadruplexes and i-motifs in the promoter regions of oncogenes could play a role in stabilizing these structures.  相似文献   

17.
A sensitive NMR spectroscopic method for detection of duplex forms of self-complementary nucleic acid sequences has been implemented. The G·U wobble base pair formed between a 15N-labeled strand and an unlabeled probe strand is used to identify the duplex. The guanine imino resonance, with its characteristic chemical shift, is detected using a 2D 15N–1H heteronuclear multiple quantum coherence (HMQC) spectrum and provides a sensitive and unambiguous route to hairpin–duplex discrimination. The method has been used to identify the duplex and hairpin forms of an RNA oligonucleotide at concentrations of ~20 µM. This method has also been used to rule out possible duplex formation of an RNA oligonucleotide corresponding to the unmodified anticodon stem–loop of Escherichia coli tRNAPhe and suggests that this hairpin has a 3 nt loop.  相似文献   

18.
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair.  相似文献   

19.
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5′- or 3′-strand. We obtained direct evidence that the 3′-strand forms a stable duplex with the complementary central strand, while the 5′-strand participates in non-Watson–Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T·A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T·A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of −100 kJ·mol−1 demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ·mol−1, is high compared with the overall triplex formation enthalpy. The observed energy advantage of a ‘correct’ base in the third strand opposite the Watson–Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.  相似文献   

20.
Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem–loop I (SLI) substrate and stem–loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem–loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8–3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7–8 kcal/mol than predicted for a comparable duplex containing three Watson–Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6–7 Watson–Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2–3 Watson–Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号