首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36958篇
  免费   2981篇
  国内免费   2610篇
  2024年   17篇
  2023年   440篇
  2022年   558篇
  2021年   1762篇
  2020年   1347篇
  2019年   1657篇
  2018年   1581篇
  2017年   1092篇
  2016年   1599篇
  2015年   2461篇
  2014年   2803篇
  2013年   2947篇
  2012年   3472篇
  2011年   3079篇
  2010年   1895篇
  2009年   1671篇
  2008年   2033篇
  2007年   1741篇
  2006年   1535篇
  2005年   1293篇
  2004年   1033篇
  2003年   893篇
  2002年   684篇
  2001年   604篇
  2000年   479篇
  1999年   545篇
  1998年   318篇
  1997年   351篇
  1996年   305篇
  1995年   270篇
  1994年   267篇
  1993年   194篇
  1992年   266篇
  1991年   225篇
  1990年   171篇
  1989年   136篇
  1988年   103篇
  1987年   127篇
  1986年   108篇
  1985年   88篇
  1984年   61篇
  1983年   46篇
  1982年   39篇
  1981年   27篇
  1980年   23篇
  1979年   26篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Salmonella enterica serovar Enteritidis (SE) is a foodborne pathogen that can threaten human health through contaminated poultry products. Live poultry, chicken eggs and meat are primary sources of human salmonellosis. To understand the genetic resistance of egg‐type chickens in response to SE inoculation, global gene expression in the spleen of 20‐week‐old White Leghorn was measured using the Agilent 4 × 44 K chicken microarray at 7 and 14 days following SE inoculation (dpi). Results showed that there were 1363 genes significantly differentially expressed between inoculated and non‐inoculated groups at 7 dpi (I7/N7), of which 682 were up‐regulated and 681 were down‐regulated genes. By contrast, 688 differentially expressed genes were observed at 14 dpi (I14/N14), of which 371 were up‐regulated genes and 317 were down‐regulated genes. There were 33 and 28 immune‐related genes significantly differentially expressed in the comparisons of I7/N7 and I14/N14 respectively. Functional annotation revealed that several Gene Ontology (GO) terms related to immunity were significantly enriched between the inoculated and non‐inoculated groups at 14 dpi but not at 7 dpi, despite a similar number of immune‐related genes identified between I7/N7 and I14/N14. The immune response to SE inoculation changes with different time points following SE inoculation. The complicated interaction between the immune system and metabolism contributes to the immune responses to SE inoculation of egg‐type chickens at 14 dpi at the onset of lay. GC, TNFSF8, CD86, CD274, BLB1 and BLB2 play important roles in response to SE inoculation. The results from this study will deepen the current understanding of the genetic response of the egg‐type chicken to SE inoculation at the onset of egg laying.  相似文献   
3.
4.
Three saponins from Oxytropis species.   总被引:2,自引:0,他引:2  
R Q Sun  Z J Jia  D L Cheng 《Phytochemistry》1991,30(8):2707-2709
Three flavonoids and three saponins have been isolated from Oxytropis species. Their structures were determined as isorhamnetin-3-O-beta-D-glucoside, rhamnetin-3-O-beta-D-galactoside, apigenin, 3-O-[alpha-L-rhamnopyranosyl (1----2)-beta-D-glucopyranosyl(1----4)-beta-D-glucuronopyranosyl]+ ++soyasapogenol B, 3-O-[beta-D-glucopyranosyl(1----2)-beta-D-glucuronopyranosyl] azukisapogenol and a new saponin 3-O-[beta-D-glucopyranosyl(1----2)-beta-D-glucopyranosyl]-25-O-alpha-L- rhamnopyranosyl-(20S,24S)-3 beta,16 beta, 20,24,25-pentahydroxy-9,19-cycloanostane.  相似文献   
5.
slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis–trans peptidyl–prolyl isomerases (PPIases). slyD mutations affect plaque formation by the phage φX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene E from a plasmid. These mutations occur disproportionately in residues of SlyD that, based on the structure of the prototype mammalian FKBP12, make ligand contacts with immunosuppressing drug molecules or are conserved in other FKBP proteins. A wide variation in the plating efficiency of φX174 on these E  R strains is observed, relative to the parental, indicating that these alleles differ widely in residual SlyD activity. Moreover, it is found that slyD mutations cause significant growth rate defects in Escherichia coli B and C backgrounds. Finally, overexpression of slyD causes filamentation of the host. Thus, among the FKBP genes found in organisms across the evolutionary spectrum, slyD is unique in having three distinct drug-independent phenotypes.  相似文献   
6.
Infection with the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV), is associated with several cancers. During lytic replication of herpesviruses, viral genes are expressed in an ordered cascade. However, the mechanism by which late gene expression is regulated has not been well characterized in gammaherpesviruses. In this study, we have investigated the cis element that mediates late gene expression during de novo lytic infection with murine gammaherpesvirus 68 (MHV-68). A reporter system was established and used to assess the activity of viral late gene promoters upon infection with MHV-68. It was found that the viral origin of lytic replication, orilyt, must be on the reporter plasmid to support activation of the late gene promoter. Furthermore, the DNA sequence required for the activation of late gene promoters was mapped to a core element containing a distinct TATT box and its neighboring sequences. The critical nucleotides of the TATT box region were determined by systematic mutagenesis in the reporter system, and the significance of these nucleotides was confirmed in the context of the viral genome. In addition, EBV and KSHV late gene core promoters could be activated by MHV-68 lytic replication, indicating that the mechanisms controlling late gene expression are conserved among gammaherpesviruses. Therefore, our results on MHV-68 establish a solid foundation for mechanistic studies of late gene regulation.  相似文献   
7.
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans.  相似文献   
8.
Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of NO.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号