首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirzow  G. C.  Sanchez  O. A.  Murray  G. J.  Brady  R. O.  Oldfield  E. H. 《Neurochemical research》1999,24(2):301-305
Gaucher disease is caused by insufficient activity of the enzyme glucocerebrosidase. Great benefit has been obtained through enzyme replacement therapy for patients with type 1 (non-neuronopathic) Gaucher disease. In contrast, inconsistent effects of enzyme therapy have been observed in patients with type 3 (chronic neuronopathic) Gaucher disease, and no benefit on the lethal course of the disease occurs in patients with Type 2 (acute neuronopathic) Gaucher disease. We examined the use of convection-enhanced delivery to augment the delivery and distribution of exogenous glucocerebrosidase (m.w. 63,000) to the brain by infusing it under slight hydrostatic pressure into the striatal region of rats. The enzyme was comparatively stable under these conditions. It was distributed from the site of injection toward the cerebral cortex where it became primarily localized in neurons. These findings provide considerable incentive for the exploration of intracerebral microinfusion of enzyme to the brain of patients with metabolic storage disorders involving the CNS.  相似文献   

2.
In Gaucher disease (glucosylceramide lipidosis), deficiency of glucocerebrosidase causes pathological storage of glucosylceramide, particularly in the spleen. A comparative biochemical and immunological analysis has therefore been made of glucocerebrosidase in spleens from normal subjects (n = 4) and from Gaucher disease patients with non-neuronopathic (n = 5) and neuronopathic (n = 5) phenotypes. The spleens from all Gaucher disease patients showed markedly decreased glucocerebrosidase activity. Discrimination of different phenotypes of Gaucher disease was not possible on the basis of the level of residual enzyme activity, or by measurements, using the immunopurified enzyme, of kinetic constants, pI or molecular mass forms. A severe decrease was found in the specific activity of glucocerebrosidase purified to homogeneity from the spleen of a patient with the non-neuronopathic phenotype of Gaucher disease, as compared with that of the enzyme purified from the spleen of a normal subject. This finding was confirmed by an immunological method developed for accurate assessment of the relative enzyme activity per molecule of glucocerebrosidase protein. The method revealed that the residual enzyme in the spleens of all investigated patients with a non-neuronopathic course of Gaucher disease had a more than 7-fold decreased activity of glucocerebrosidase (measured in the presence of taurocholate) per molecule of enzyme, and that the concentration of glucocerebrosidase molecules in the spleens of these patients was near normal. Observations made with immunoblotting experiments were consistent with these findings. In contrast, in the spleens of patients with neuronopathic phenotypes of Gaucher disease, the concentration of glucocerebrosidase molecules was severely decreased.  相似文献   

3.
Diploid human infant skin fibroblasts cultured from normal infants and Gaucher disease infants, with genetically defective lysosomal glucosylceramide:beta-glucohydrolase activity, had a full range of homologous glycosphingolipids from the simplest (glucosylceramide) to higher neutral derivatives (lactosyl-, trihexosyl- and tetrahexosylceramide) and anionic sialo derivatives (gangliosides) (sialosyllactosyl-, disialosyllactosyl-, sialosylgangliotriaosyl-, and mono- and disialosylgangliotetraosylceramide). Although excessive storage of glucosylceramide in histiocytes is pathognomonic for Gaucher disease, we found that Gaucher disease fibroblasts contained 1.23 +/- 0.08 nmol of glucosylceramide/mg cell protein; normal infant cells, 1.11 +/- 0.48. When we aged infantile Gaucher disease fibroblasts for 20 days beyond their confluency state, we found no increased accumulation of glucosylceramide, but a 1.5-2-fold increase in trihexosylceramide, sialosylgangliotetraosylceramide, and disialosyllactosylceramide. Gaucher disease fibroblasts took up and could not degrade but, instead, effectively converted pulse-chase 3-O-[3H]glucosylceramide supplied in the growth medium in liposomes into higher glycosphingolipids, especially the plasma membrane ganglioside, sialosyllactosylceramide. When grown with extracellular particulate [3H]glucosylceramide, infantile Gaucher fibroblasts localized it and higher labeled homologues in the plasma membrane; glucosylceramide did not accumulate in the lysosomes. These findings indicate that fibroblasts that are genetically deficient in lysosomal glucosylceramide:beta-glucosidase avoid pathological lysosomal accumulation by relegating undegradable glucosylceramide to an anabolic compartment where glucosylceramide is converted into more highly glycosylated glycosphingolipids.  相似文献   

4.
《Autophagy》2013,9(5):648-649
Gaucher disease is an inherited autosomal recessive disease caused by mutations of acid β-glucosidase, a lysosomal hydrolase specific for degradation of glucosylceramide and glucosylsphingosine in the glycosphingolipid metabolic pathway. Clinically, Gaucher disease is classified into three types: type 1 is a visceral disease, whereas types 2 and 3 are acute and chronic neuronopathic variants, respectively. In types 2 and 3, the CNS pathology displays neuronal inclusions and neuron death. The underlying mechanism(s) by which the glycosphingolipid storage leads to this pathology is not fully understood. A mouse model whose phenotype mimicked that of the human neuronopathic variants was generated in our lab. In the brain of this model, abnormal autophagosomes and lysosomes implicate autophagy in the neuronal degeneration of Gaucher disease.  相似文献   

5.
In this study, brain gangliosides in prenatal and postnatal human life were analyzed. Immunohistochemically, the presence of "c"-pathway of gangliosides (GQ1c) in embryonic brain was only recorded at 5 weeks of gestation. Biochemical results indicated a twofold increase in human cortex ganglioside concentration between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except cerebellar cortex, which was characterized by increasing GT1b. In this developmental period, GD3 was found to be localized in the ventricular zone of the cortical wall. After birth, GD1b ganglioside in neuropil of granular cell layer corresponding to growing mossy fibers was expressed in cerebellar cortex. Between birth and 20/30 years of age, a cerebral neocortical difference of ganglioside composition was observed, characterized by lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In cerebellar cortex, GD1b and GT1b fractions decreased with aging.  相似文献   

6.
Lipid composition was studied on cerebral tissue from nine children who had died of a progressive encephalopathy called the infantile form of neuronal ceroid lipofuscinosis (INCL) or polyunsaturated fatty acid lipidosis (PFAL). In the terminal stage of the disease, the concentrations of all lipid classes were found to be significantly reduced in the cerebral and cerebellar cortex and white matter. The concentration of gangliosides of the cerebral cortex was 15% and that of cerebrosides (galactosylceramide) in white matter 0.2-5% of the normal values for the children's ages. The reduction of gangliosides mainly affected those of the gangliotetraose series, particularly GD1a. The fatty acids of the linolenic acid series were strongly reduced in ethanolamine and serine phosphoglycerides. A very large increase up to 100-fold of oligoglycosphingolipids of the globo series and two fucose-containing lipids of the neolacto series was found in the forebrain of the three advanced cases examined. The brain tissue also contained very high concentrations of mono-, di-, and trisialogangliosides of the lacto and neolacto series, gangliosides with type 1 chain dominating. The structures of the gangliosides were tentatively identified by gas chromatography-mass spectrometry and monoclonal antibodies with carefully determined epitope specificity. The gangliosides and neutral glycosphingolipids had very similar fatty acid composition, consisting of about 40% stearic acid and 40% C24-acids.  相似文献   

7.
In this study, brain gangliosides in prenatal and postnatal human life and Alzheimer's disease were analyzed. Immunohistochemically, the presence of the "c"-series of gangliosides (GQ1c) was only registered in the embryonic brain at 5 weeks of gestation. Biochemical results indicated a two-fold increase in ganglioside concentration in the human cortex between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except in the cerebellar cortex, which was characterized by increasing GT1b. During prenatal human development, regional differences in ganglioside composition could only be detected between the cerebrum ("a"-pathway) and the cerebellum ("b"-pathway). Between birth and 20-30 years of age, a cerebral neocortical difference of ganglioside composition occurred, characterized by the lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In the frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in the occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In the cerebellar cortex, GD1b and GT1b fractions decreased with aging. In Alzheimer's disease, we found all ganglio-series gangliosides (GM1, GD1a, GD1b, GT1b) to be decreased in regions (temporal and frontal cortex and nucleus basalis of Meynert) involved in pathogenesis of disease. In addition, in Alzheimer's disease we found simple gangliosides (GN2, GM3) to be elevated in the frontal and parietal cortex, which might correlate accelerated lysosomal degradation of gangliosides and/or astrogliosis occurring during neuronal death.  相似文献   

8.
We recently demonstrated that elevation of intracellular glucosylceramide (GlcCer) levels results in increased functional Ca2+ stores in cultured neurons, and suggested that this may be due to modulation of ryanodine receptors (RyaRs) by GlcCer (Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M. and Futerman, A. H. (1999) J. Biol. Chem. 274, 21673-21678). We now systematically examine the effects of exogenously added GlcCer, other glycosphingolipids (GSLs) and their lyso-derivatives on Ca2+ release from rat brain microsomes. GlcCer had no direct effect on Ca2+ release, but rather augmented agonist-stimulated Ca2+ release via RyaRs, through a mechanism that may involve the redox sensor of the RyaR, but had no effect on Ca2+ release via inositol 1,4,5-trisphosphate receptors. Other GSLs and sphingolipids, including galactosylceramide, lactosylceramide, ceramide, sphingomyelin, sphingosine 1-phosphate, sphinganine 1-phosphate, and sphingosylphosphorylcholine had no effect on Ca2+ mobilization from rat brain microsomes, but both galactosylsphingosine (psychosine) and glucosylsphingosine stimulated Ca2+ release, although only galactosylsphingosine mediated Ca2+ release via the RyaR. Finally, we demonstrated that GlcCer levels were approximately 10-fold higher in microsomes prepared from the temporal lobe of a type 2 Gaucher disease patient compared with a control, and Ca2+ release via the RyaR was significantly elevated, which may be of relevance for explaining the pathophysiology of neuronopathic forms of Gaucher disease.  相似文献   

9.
Summary A 444leucine to proline mutation detected by a NciI polymorphism in the human glucocerebrosidase gene was studied to investigate the correlation of the three clinical phenotypes of Gaucher disease with this mutation in 11 Japanese patients with Gaucher disease (type I, 8 patients; type II, 1 patient; type III, 2 patients) and to determine the feasibility of the use of genomic probe DNA for carrier detection and prenatal diagnosis in 8 Japanese families with Gaucher disease and agreeable to family study (type I, 6 families; type III, 2 families). The homoallelic 444leucine to proline mutation was found only in patients with type I disease. Of the 8 type I patients, 5 had the homoallelic mutation and 2 had one mutant allele. One patient with type II disease did not have this mutant allele. Of the 2 type III patients, one had a single mutant allele whereas the other exhibited no mutation of this kind. These results suggest that the 444leucine to proline mutation is very common in the type I (non-neuronopathic form) disease and is not tightly associated only with neuronopathic types of Gaucher disease in Japanese patients. These findings seem to conflict with others showing that this mutation is partially responsible for the occurrence of neuronopathic Gaucher disease. Thus, the NciI polymorphism will not be useful for the diagnosis of subtypes of Gaucher disease. Carrier detection was feasible in three families with type I disease of the 8 families analyzed by the NciI polymorphism.  相似文献   

10.
Gaucher disease (OMIM 230800, 230900, 231000), the most common lysosomal storage disorder, is due to a deficiency in the enzyme glucocerebrosidase. Gaucher patients display a wide spectrum of clinical presentation, with hepatosplenomegaly, haematological changes, and orthopaedic complications being the predominant symptoms. Gaucher disease is classified into three broad phenotypes based upon the presence or absence of neurological involvement: Type 1 (non-neuronopathic), Type 2 (acute neuronopathic), and Type 3 (subacute neuronopathic). Nearly 300 mutations have been identified in Gaucher patients, with the majority being missense mutations. Though studies of genotype-to-phenotype correlations have revealed significant heterogeneity, some consistent patterns have emerged to inform prognostic and therapeutic decisions. Recent research has highlighted a potential role for Gaucher disease in other comorbidities such as cancer and Parkinson's Disease. In this review, we will examine the potential relationship between Gaucher disease and the synucleinopathies, a group of neurodegenerative disorders characterized by the development of intracellular aggregates of ??-synuclein. Possible mechanisms of interaction will be discussed.  相似文献   

11.
—Gangliosides and allied neutral glycosylceramides were isolated from human infant (2-24 months of age) cerebral cortex and white matter. The individual glycolipids were separated quantitatively by a combination of column and thin-layer chromatographic methods on silica gel, DEAE-cellulose and Sephadex G-25. In cerebral cortex GD1a and GM1 were the major fractions and constituted more than 70 per cent of the total gangliosides. The concentrations of neutral glycolipids, except for galactosylceramides, were very low: lactosylceramide and glucosylceramide comprised 30 and 5 nmol/g wet weight, respectively. In white matter their concentrations were 10 times higher. The ganglioside concentration was only 50 per cent of that in cerebral cortex: the difference was accounted for mainly by the much lower content of the major di- and trisialogangliosides. Stearic acid was the predominant fatty acid of all brain gangliosides. GM3, and GD3 had a considerable content of the very long-chain fatty acids, C22-C24, particularly in the white matter. Glucosylceramide and lactosylceramide had almost identical fatty acid patterns between each other in cerebral cortex and white matter. In the cerebral cortex stearic acid and in the white matter the very long-chain acids predominated. d20:1 Sphingosine comprised more than 20 per cent of total sphingosine in all the gangliosides of the Gl- and G2-series. GM3, and GD3 like lactosylceramide contained significantly less of d20:1 sphingosine. The findings suggest the existence of separate compartments for the biosynthesis of the gangliosides. Glucosylceramides and lactosylceramides of white matter have the same ceramide composition as the galactosylceramides with normal fatty acids and are thus unlikely to be intermediates in the metabolism of the major brain gangliosides which have a completely different fatty acid composition.  相似文献   

12.
To facilitate the study of the chemical pathology of galactosylsphingosine (psychosine, GalSph) in Krabbe disease and glucosylsphingosine (GlcSph) in Gaucher disease, we have devised a facile method for the effective separation of these two glycosylsphingosines from other glycosphingolipids (GSLs) in Krabbe brain and Gaucher spleen samples. The procedure involves the use of acetone to selectively extract GalSph and GlcSph, respectively, from Krabbe brain and Gaucher spleen samples. Since acetone does not extract other GSLs except modest amounts of galactosylceramide, sulfatide, and glucosylceramide, the positively charged GalSph or GlcSph in the acetone extract can be readily separated from other GSLs by batchwise cation-exchange chromatography using a Waters Accell Plus CM Cartridge. GalSph or GlcSph enriched by this simple procedure can be readily analyzed by thin-layer chromatography or high-performance liquid chromatography.  相似文献   

13.
The binding of [3H]GABA and [3H]flunitrazepam was performed with synaptic membranes and post-synaptic densities (PSDs) isolated from canine cerebral cortex and cerebellum. Two GABA binding sites were found with cerebral cortex membranes but only one with cerebellar membranes. PSDs isolated from these showed only single binding sites, with cerebellar PSDs exhibiting lower KD values and a larger concentration of sites than did cerebral cortex PSDs. In the case of flunitrazepam, only one binding site was found for all four preparations, with cerebellar PSDs having twice the concentration of sites of cerebral PSDs. Photoaffinity labeling of the flunitrazepam receptor in PSDs resulted in the binding to a 51,000 Mr protein in both cases, with cerebellar PSDs again showing an increased concentration over that found in cerebral cortex PSDs. Based on this work, and on earlier work of ourselves and of others, we conclude that both populations of isolated PSDs contain inhibitory sites, but that the intact PSDs in both preparations are derived from Gray type I, probably excitatory, synapses, and that the inhibitory sites are found in the broken-up material in the PSD fractions which are derived from Gray type II, probably inhibitory, synapses.  相似文献   

14.
The pharmacological chaperone, isofagomine (IFG), enhances acid β-glucosidase (GCase) function by altering folding, trafficking, and activity in wild-type and Gaucher disease fibroblasts. The in vivo effects of IFG on GCase activity, its substrate levels, and phenotype were evaluated using a neuronopathic Gaucher disease mouse model, 4L;C* (V394L/V394L + saposin C-/-) that has CNS accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) as well as progressive neurological deterioration. IFG administration to 4L;C* mice at 20 or 600 mg/kg/day resulted in life span extensions of 10 or 20 days, respectively, and increases in GCase activity and protein levels in the brain and visceral tissues. Cerebral cortical GC and GS levels showed no significant reductions with IFG treatment. Increases of GC or GS levels were detected in the visceral tissues of IFG treated (600 mg/kg/day) mice. The attenuations of brain proinflammatory responses in the treated mice were evidenced by reductions in astrogliosis and microglial cell activation, and decreased p38 phosphorylation and TNFα levels. Terminally, axonal degeneration was present in the brain and spinal cord from untreated and treated 4L;C* mice. These data demonstrate that IFG exerts in vivo effects by enhancing V394L GCase protein and activity levels, and in mediating suppression of proinflammation, which led to delayed onset of neurological disease and extension of the life span of 4L;C* mice. However, this was not correlated with a reduction in the accumulation of lipid substrates.  相似文献   

15.
The effect of thyrotropin-releasing hormone (TRH) and lithium on myo-inositol metabolism has been assessed in rat cerebral cortex, cerebellar cortex, and sciatic nerves. Sprague-Dawley male rats were injected subcutaneously with 10 mEq/kg of LiCl and intraperitoneally with 10 mg/kg of TRH-tartrate, alone or in combination. Either lithium or TRH alone had little effect on the myo-inositol concentration in cerebellar cortex, whereas the combination of lithium and TRH significantly lowered the level. The myo-inositol level of cerebellar cortex reached its nadir (70% of values in untreated control rats) 30 min after addition of TRH and then returned to the control level at 90 min. In cerebral cortex, both lithium alone and lithium plus TRH significantly reduced the myo-inositol level. No effect was seen on the myo-inositol concentration in sciatic nerves with these regimens. These results suggested that the pharmacological dose of TRH activated phosphatidylinositol turnover in rat cerebellar cortex and subsequently reduced the myo-inositol level in the presence of lithium.  相似文献   

16.
We investigated the localization of major gangliosides in adultrat brain by an immunofluorescence technique with mouse monoclonalantibodies (MAbs). Five MAbs (GMB16, GMR17, GGR12, GMR5 andGMR13) that specifically recognize gangliosides GM1, GD1a, GD1b,GT1b and GQ1b, respectively, were used. We have found that thereis a cell type-specific expression of the ganglioside in therat central nervous system. In cerebellar cortex, GM1 was expressedin myelin and some glial cells. GD1a was detected exclusivelyin the molecular layer. GD1b and GQ1b were present restrictedlyon the granular layer; GD1b was detected on the surface of thegranular cell bodies, whereas GQ1b was present in the cerebellarglomerulus. GT1b was distributed intensely in both the molecularlayer and the granular layer. In cerebral cortex, GM1 was detectedin some glial cells. Dense staining was limited to the whitematter. GD1a was distributed in layers I, II/III and Va, andthe upper part of layer VI, whereas GQ1b was localized in layersIV and Vb, and the lower part of layer VI. GD1b was detectedbeneath layer III. GT1b appeared to be distributed throughoutall layers. In other regions, such as hippocampal formationand spinal cord, the expression of the ganglioside was alsohighly localized to a specific cell type and layer. ganglioside monoclonal antibody rat brain  相似文献   

17.
Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Type I GD is the mildest form and is characterized by the absence of neuronopathic affection. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood.  相似文献   

18.
The effects of intracerebroventricular administrations of three natural angiotensins, angiotensin I (ANG I 3.8 X 10-11-9.4 X10-10 mol/kg body weight), II (9.6 X 10-12-2.4 X 10-10 mol/kg body weight) and III (2.7 X 10-10 2.5 X 10-9 mol/kg body weight) on systemic blood pressure were investigated in conscious rats. Angiotensin II (ANG II), ANG I and angiotensin III (ANG III), increased blood pressure in a dose-related manner. The order of potency of angiotensins was ANG II greater than ANG I greater than ANG III. The intraventricular administration of a converting enzyme inhibitor (SQ 14225, 6.9 X10-8 mol/kg) abolished the central effect of ANG I, while an angiotensin II analogue ([Sar1-Ala8]ANG II, 1.1 X 10-8 mol/kg) administered intraventricularly inhibited the central pressor effects of these three angiotensins. These results suggest that ANG II is a main mediator of the renin-angiotensin system in the central nervous system.  相似文献   

19.
Monosodium glutamate (MSG) is a natural constituent of many foods and was reported to have neurotoxic effects. The aim of this study was to investigate the possible toxic effect of MSG on histological and glial fibrillary acidic protein (GFAP) immunohistochemical features of cerebellar cortex of albino rats and to evaluate the possible protective role of vitamin C against this effect. Thirty rats were divided into 3 equal groups. Group I, control; Group II, treated with 3 g/kg/day of MSG and Group III, received 100 mg/kg/day of vitamin C simultaneously with MSG. After 14 days, cerebellar tissues were obtained and processed to prepare sections stained with H&E, toluidine blue. The GFAP was detected immunohistochemically. Histological examination of group II showed degenerative changes as pyknotic Purkinje and granule cells with areas of degeneration surrounded by inflammatory cells in granular layer. However, group III showed more preserved histological structure of cerebellar cortex. Statistical analysis of area percent of the GFAP immunoreaction among studied groups showed significant increase in group III when compared with group I and group II. However, a non significant increase was detected in group II when compared with group I. In conclusion, MSG has neurotoxic effect leading to degenerative changes in neurons and astrocytes in cerebellar cortex of albino rats and vitamin C supplementation could protect from these changes. Getting more attention to the constituents of food products is recommended and vitamin C could be advised to protect people from food oxidants additives.  相似文献   

20.
Abstract

Human lysosomal β-glucosidase (D-glucosyl-acylsphingo-sine glucohydrolase, EC 3.2.1.45) is a membrane-associated enzyme that cleaves the β-glucosidic linkage of glucosylcer-amide (glucocerebroside), its natural substrate, as well as synthetic β-glumsides. Experiments with cultured cells suggest that in vivo this glycoprotein requires interaction with negatively charged lipids and a small acidic protein, SAP-2, for optimal glucosylceramide hydrolytic rates. In vitro, detergents (Triton? X-100 or bile acids) or negatively charged gangliosides or phos-pholipids and one of several “activator proteins” increase hydrolytic rate of lipid and water-soluble substrates. Using such in vitro assay systems and active site-directed covalent inhibitors, kinetic and structural properties of the active site have been elucidated. The defective activity of this enzyme leads to the variants of Gaucher disease, the most prevalent lysosomal storage disease. The nonneuronopathic (type 1) and neuronopathic (types 2 and 3) variants of this inherited (autosomal recessive) disease but panethnic, but type 1 is most prevalent in the Ashkenazi Jewish population. Several missense mutations, identified in the structural gene for lysosomal β-glucosidase from Gaucher disease patients, are presumably casual to the specifically altered post-translational oligosaccharide processing or stability of the enzyme as well as the alterecA in vitro kinetic properties of the residual enzyme from patient tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号