首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Two phases of bud activity were identified in the new growth of one-year-old erect coppice shoots on 11-year-old low-pruned stumps of mulberry (Morus alba L. cv. Shin-ichinose) in spring, the sprouting phase in which the majority of the buds, including the basal ones, sprout and elongate, and the dominance phase (starting 4–5 weeks after sprouting) during which the upper laterals begin to assert dominance and suppress the growth of lower laterals, becoming new leading shoots. In contrast, arching before sprouting markedly inhibited buds on the under side, leading to poor shoots. By late April, the sprouts on the upper side grew readily into new erect shoots, resulting in considerable dominance over those from the lateral sides. Of these erect shoots, those located closer to the stem base grew more in May and June. The effects of arching made during the sprouting phase (late April) on bud activity and shoot lengths were generally similar to those of earlier archings before spring bud bursting. Separation of the shoots from the upper and under sides by longitudinal, horizontal splitting of the arched stems in late April did not affect the inhibited elongation of the shoots from the under side. These results suggest that in the response to arching before and in late April, the effects are related to spring bud bursting and gravimorphism. In contrast, arching during and after the dominance phase (May) had no gravimorphic effects on growth of the shoots on the upper side, although there was a stimulation of outbreak of the buds on the upper side, which remained dormant during spring bud bursting. Continuous basal applications of abscisic acid in aqueous solution inhibited bud break and shoot growth of the postdormant erect stem segments, and defoliation of the new shoots markedly. In contrast, similar applications of an ethylene-releasing compound, Ethephon, depressed shoot elongation slightly, but enhanced defoliation greatly. Gibberellic acid (GA3) stimulated shoot elongation, but depressed leaf enlargement.  相似文献   

2.
Measurements of changes in the degree of dominance by upper laterals over lower ones in coppice shoots (1-year-old stems) of 12-year old low- pruned stumps of mulberry ( Morus alba L. cv. Shin-ichinose) were made by removal of upper stem sections (pruning) or of lateral buds (debudding.) before spring bud burst, as part of a study of the factors involved in dominance relationships between the developing buds and elongating shoots. Besides inhibition of lower laterals by the upper, leading shoots, there was evidence for mutual inhibition (competition) of neighboring laterals along the stem. Thus in stems in which every other bud, or 4 out of every 5 buds were removed, there was a delay in growth cessation of lower laterals and their greater elongation than in controls. Such competition was seen to exist even between the uppermost and sub-terminal laterals, since the former elongated more in the absence of the latter.
In contrast to high and middle pruned stems, the delay in sprouting of the buds in low-pruned stems resulted in limited elongation of the shoots from such buds. This inhibition was removed when all the stems on a stump were pruned to the same length, suggesting that it was associated with intact stems with actively growing laterals. Patterns of regrowth of the short shoots (lower laterals) after summer pruning (middle-pruned) depended on the extent of removal of other stems with vigorously growing, upper laterals. These results demonstrate that both acropetal and basipetal influences are important in bud and shoot dominance relationships.  相似文献   

3.
Suzuki, T. 1990. Apical dominance in mulberry ( Morus alba ): Effects of position of lateral and accessory buds and leaves. – Physiol. Plant. 78: 468-474.
Removing apical portions of current growth coppice shoots from field-grown, low-pruned stumps of mulberry ( Morus alba L. cv. Shin-ichinose) caused sprouting of one or more upper main buds, almost concurrently with that of accessory buds. However, removal of the new sprouts, including those from accessory buds, slightly enhanced the sprouting of buds immediately below them, and did not affect buds lower down. In contrast, mature leaves inhibited the buds in their axils. Budless, leafy nodes on the upper part of pruned shoots tended to swell after treatment, perhaps due to the accumulation of substances translocated from the roots and possibly from the remaining leaves. Lateral buds at different positions along the shoot differed in their sprouting ability with buds lower on the shoot being more inhibited. This inhibition gradient dissappeared when all coppice shoots on one stump were pruned to the same bud position, suggesting inhibition from neighboring, actively growing shoots. These results demonstrate that acropetal influences are important in bud dominance relationships.  相似文献   

4.
In mulberry ( Morus alba L. cv. Shin-ichinose), shoot-tip abscission following the cessation of apical growth could be induced in different internodes, depending on the vigour of the shoot and its apex and other internal and external factors. In the lateral, short shoots of 1-year-old stems of low-pruned trees, the apical growth cessation and shoot-tip abscission (May–June) resulted primarily from the dominance of the upper, long shoots and intense competition among laterals along the stem. Decapitation of the laterals, before abortion of their apices took place (early May), readily caused adventitious abscission of the distal internode. Similar decapitation-induced, adventitious abscission of the distal internode of the upper, long shoots of 1-year-old stems of pruned trees also occurred (May–September), demonstrating that the abscission itself is not directly associated with photoperiod. In May and June, decapitation induced abscission primarily in parallel with or after sprouting of lateral buds and shoot elongation, while in July, August and September, the abscission was induced by decapitation and independently of sprouting. Shoot (stem) orientation positively affected the abscission, which is related to gravimorphic effects on buds and shoots on the lower and lateral sides of the horizontally trained stem. These results suggest that the vigour of shoots and apices is an important determinant of growth and apex abscission in mulberry.  相似文献   

5.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   

6.
The classic Thimann-Skoog or auxin replacement apical dominance test of exogenous auxin repression of lateral bud outgrowth was successfully executed in both seedlings and older trees of white ash, green ash, and red oak under the following conditions: (1) decapitation of a twig apex and auxin replacement were carried out during spring flush, (2) the decapitation was in the previous season's overwintered wood, and (3) the point of decapitation was below the upper large irrepressible lateral buds but above the lower repressible lateral buds. Although it has been suggested that neither auxin, the terminal bud, nor apical dominance have control over the outgrowth of the irrepressible buds during spring flush, there is evidence in the present study that indicates that such control over the repressible buds exists. In seedlings, second-order branching, which resulted from decapitation of elongating current shoots, was also inhibited by exogenous auxin in the three species. Hence, the auxin replacement experiments did work on year-old proleptic buds (of branches of older trees) that would have entered the bud bank and also on current buds of seedlings. Cytokinin treatments were ineffectual in promoting bud growth.  相似文献   

7.
* In the apple tree (Malus domestica), shoot architecture - the distribution of lateral bud types and growth along the parent shoot - has been extensively investigated. The distal zone of a shoot is characterized by a high proportion of vegetative or floral axillary branches mixed with latent buds and aborted laterals. The hypothesis tested here was that bud development was related to hydraulic conductance of the sap pathway to the bud, independently of an acrotonic (proximal vs distal) effect. * The distal zone of 1-yr-old shoots was studied on five cultivars for bud size and composition (number of appendages) and hydraulic conductance before bud burst. * Bud size, composition and hydraulic conductance were highly variable for all cultivars. A positive correlation was demonstrated between both the number of cataphylls and green-leaf primordia, and hydraulic conductance. Cultivar and bud size affected the intercept of these relationships more than the slope, suggesting similar scaling between these variables, but different hydraulic efficiencies. A great proportion of small buds were also characterized by null values of hydraulic conductance. * This study suggests that hydraulically mediated competition exists between adjacent buds within the same branching zone, prefiguring the variability of lateral types in the following growing season. It is hypothesized that this developmental patterning is driven by hydraulic characteristics of the whole metamer, including the subtending leaf, during bud development.  相似文献   

8.
Seedlings and coppice shoots of Betula pubescens Ehrh. were grown under controlled conditions designed to simulate the annual growth cycle, and a water stress was introduced during the short day (SD). Alleviation of hud dormancy after increasing periods at chilling temperatures was tested under long day (LD) conditions. Abscisic acid (ABA) was analysed in leaf and bud samples by gas chromatography-mass spectrometry using [2H4]ABA as the internal standard. Elongation growth of coppice shoots was faster than that of seedlings under both LD and SD conditions, while the final growth cessation occurred in a similar manner and was not affected by water stress, which significantly reduced growth rate in both plant types. Bud dormancy gradually decreased with increasing length of chilling, starting from the basal parts of the plant axis. Water stress did not retard hudhurst. but rather improved it in the chilled coppice shoots and in the non-chilled and partially chilled seedlings. Water content of buds was higher in coppice shoots than in seedlings, but after exposure to SD. it gradually decreased to 45% in both plant types and was not affected by water stress or chilling. The ABA level in both leaves and buds increased during SD treatment and was" enhanced by water stress. No clear differences in bud ABA level were found between the seedlings and coppice shoots under SD conditions, although coppice shoots had less ABA during the preceding LD conditions. There was, in general, no clear effect of chilling on bud ABA level. Budbursl in chilled, single-node cuttings was inhibited by external ABA treatment, which raised the internal ABA levels 10 to 150 times above normal. The observed correlation between ABA level and water content in buds during induction of dormancy under SD and water stress conditions indicates a possible role for ABA in the regulation of dormancy.  相似文献   

9.
Light and temperature are two environmental factors that deeply affect bud outgrowth. However, little is known about their impact on the bud burst gradient along a stem and their interactions with the molecular mechanisms of bud burst control. We investigated this question in two acrotonic rose cultivars. We demonstrated that the darkening of distal buds or exposure to cold (5 °C) prior to transfer to mild temperatures (20 °C) both repress acrotony, allowing the burst of quiescent medial and proximal buds. We sequenced the strigolactone pathway MAX‐homologous genes in rose and studied their expression in buds and internodes along the stem. Only expressions of RwMAX1, RwMAX2 and RwMAX4 were detected. Darkening of the distal part of the shoot triggered a strong increase of RwMAX2 expression in darkened buds and bark‐phloem samples, whereas it suppressed the acropetal gradient of the expression of RwMAX1 observed in stems fully exposed to light. Cold treatment induced an acropetal gradient of expression of RwMAX1 in internodes and of RwMAX2 in buds along the stem. Our results suggest that the bud burst gradient along the stem cannot be explained by a gradient of expression of RwMAX genes but rather by their local level of expression at each individual position.  相似文献   

10.
Levels of endogenous abscisic acid (ABA; free and bound forms) have been determined by gas chromatography in stems and buds of broad-bean plants ( Vicia faba L. cv. Aguadulce) in relation to apical dominance. A downward gradient of free cis-trans ABA occurred along the stem, from the apical bud to the roots. Except for the actively growing apical bud the levels of free cis-trans ABA were higher in the buds than in the corresponding nodes. An inverse correlation can be set up between levels of free cis-trans ABA and growth of buds, except for the cotyledonary ones. High levels of bound ABA ( cis-trans form) are correlated with the growth of the apical bud and that of the axillary bud ax1. The hormonal regulation of the growth of the cotyledonary buds, which contained high levels of trans-trans ABA in bound forms, is apparently different from that of the other buds.  相似文献   

11.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

12.
Clonal species are characterised by having a growth form in which roots and shoots originate from the same meristem so that adventitious nodal roots form close to the terminal apical bud of stems. The nature of the relationship between nodal roots and axillary bud growth was investigated in three manipulative experiments on cuttings of a single genotype of Trifolium repens. In the absence of locally positioned nodal roots axillary bud development within the apical bud proceeded normally until it slowed once the subtending leaf had matured to be the second expanded leaf on the stem. Excision of apical tissues indicated that while there was no apical dominance apparent within fully rooted stems and very little in stems with 15 or more unrooted nodes, the outgrowth of the two most distal axillary buds was stimulated by decapitation in stems with intermediate numbers of unrooted nodes. Excision of the basal branches from stems growing without local nodal roots markedly increased the length and/or number of leaves on 14 distally positioned branches. The presence of basal branches therefore prevented the translocation of root-supplied resources (nutrients, water, phytohormones) to the more distally located nodes and this caused the retardation in the outgrowth of their axillary buds. Based on all three experiments we conclude that the primary control of bud outgrowth is exerted by roots via the acropetal transport of root-supplied resources necessary for axillary bud outgrowth and that apical dominance plays a very minor role in the regulation of axillary bud outgrowth in T. repens.  相似文献   

13.
An efficient and reproducible protocol for regeneration of plantlets at a high frequency was developed by using sugar cane buds. Disinfected buds were firstly submerged in ethanol sodium hypochlorite solution with 0.1 % polyvinylpyrrolidone, 1.5 % ascorbic acid and 1.75 % citric acid as antioxidants and subsequently treated with solution of agrimicin:captan (1:1). The upper stalk segment was better to obtain bud in vitro culture compared to lower segments. The medium for induction of multiple shoots consisted of Murashige and Skoog basal medium (MS) supplemented with 2 mg dm−3 thidiazuron and 1 mg dm−3 naphthalene acetic acid. An average of 24 shoots per bud was obtained for cv. Mex 68-P23 within four weeks and 29 shoots for cv. MY 55-14 within six weeks. Indole-3-butyric acid induced more roots in both cultivars compared to the untreated plantlets. Plantlets transferred to soil showed normal growth with up to four axilliary buds in each node. It was concluded that the germplasm obtained through the above mentioned technique generated stalks with more buds in each node which would give farmers more vegetative material for plantations in field with 100 % germination.This research was funded by Fundacion Produce Chiapas A.C. (Mexico).  相似文献   

14.
The development of axillary buds, terminal buds, and the shoots extended from them was studied inHydrangea macrophylla. The upper and lower parts in a nonflower-bearing shoot are discernible; the preformed part of a shoot develops into the lower part and the neoformed part into the upper part (Zhou and Hare, 1988). These two part are formed by the different degrees of internode elongation at early and late phases during a growth season, respectively. Leaf pairs in the neoformed part of the shoot are initiated successively with a plastochron of 5–20 days after the bud burst in spring. The upper axillary buds are initiated at approximately the same intervals as those of leaf pairs, but 10–30 days later than their subtending leaves. Changes in numbers of leaf pairs and in lengths of successive axillary buds show a pattern similar to the changes in internode lengths of the shoot at the mature stage. The uppermost axillary buds of the flower-bearing shoot often begin extending into new lateral shoots when the flowering phase has ended. The secondary buds in terminal and lower axillary buds are initiated and developed in succession during the late phase of the growth season. Internode elongation seems to be important in determining the degrees of development of the axillary buds. Pattern of shoot elongation is suggested to be relatively primitive. Significances of apical dominance and environmental conditions to shoot development are discussed.  相似文献   

15.
The structure of shoots, in particular of winter buds, ofHydrangea macrophylla was examined. The non-flower-bearing shoot is usually composed of a lower and an upper part, between which a boundary is discernible by means of a distinctly short internode. This internode is the lowermost of the upper part, and it is usually shorter than the internodes immediately above and below, although the internodes tend to shorten successively from the proximal to the distal part of the shoot. Variations exist in the following characters among the terminal bud, the axillary bud on the lower part of the shoot and the axillary bud on the upper part: (1) length of bud; (2) character of the outermost pair of leaf primordia; (3) degree of development of secondary buds in the winter bud; and (4) the number of leaf primordia. Usually, the terminal bud contains several pairs of foliage leaf primordia with a primordial inflorescence at the terminal of the bud, but the axiallary bud contains only the primordia of foliage leaves in addition to a pair of bud scales.  相似文献   

16.
Many plants show compensatory regrowth after herbivory and dormant buds often have an important role in compensatory responses. Theoretical models have shown that herbivore damage may select for a bud bank, i.e., a pool of dormant buds that are protected from herbivory and that are activated after herbivore damage. Earlier models assumed that undamaged plants cannot activate their dormant buds without damage, although they apparently have sufficient resources for successful seed production through the additional shoots dormant buds could produce. However, many plants are able to gradually activate buds over an extended period of time without any cue from damage. The aim of this study was to analyze how herbivory imposes selection for gradual mobilization of the bud bank. I assume that selection pressures that affect the fraction of buds active at each time point include damage by herbivores, time left to the end of season, and the opportunity costs of dormant buds. I modelled bud dynamics with gradual activation when there is a single damage event and (i) when the seed set of a shoot is not dependent on the time it is active, or (ii) when the seed set of a shoot diminishes with later activation. In addition, I analyzed how (iii) risk of repeated herbivory affects selection for gradual activation. Under these models, gradual activation is optimal over a wide range of herbivory pressures. Selection appears to favour activation of all buds at the beginning of the season only when herbivore pressure is weak and when early shoots have a higher seed set than late shoots. Alternatively, strong herbivore pressure and late damage may select for a large bud bank throughout the growing season, without gradual activation; the bud bank is only mobilized after damage. In this case, damaged plants can overcompensate, i.e. they have a higher seed set than undamaged plants with the same bud activation pattern. Selection for overcompensation demands a stronger herbivore pressure in this current model than in earlier bud bank models. The model never predicts selection for overcompensation when there is a risk of repeated herbivory. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Shoot inversion induces outgrowth of the highest lateral bud (HLB) adjacent to the bend in the stem in Pharbitis nil. In order to determine whether or not ethylene produced by shoot inversion plays a direct role in promoting or inhibiting bud outgrowth, comparisons were made of endogenous levels of ethylene in the HLB and HLB node of plants with and without inverted shoots. That no changes were found suggests that the control of apical dominance does not involve the direct action of ethylene. This conclusion is further supported by evidence that the direct application of ethylene inhibitors or ethrel to inactive or induced lateral buds has no significant effect on bud outgrowth. The hypothesis that ethylene evolved during shoot inversion indirectly promotes the outgrowth of the highest lateral bud (HLB) by restricting terminal bud (TB) growth is found to be supported by the following observations: (1) the restriction of TB growth appears to occur before the beginning of HLB outgrowth; (2) the treatment of the inverted portion of the shoot with AgNO3, an inhibitor of ethylene action, dramatically eliminates both the restriction of TB growth and the promotion of HLB outgrowth which usually accompany shoot inversion; and (3) the treatment of the upper shoot of an upright plant with ethrel mimics shoot inversion by retarding upper shoot growth and inducing outgrowth of the lateral bud basipetal to the treated region.  相似文献   

18.
黄花杓兰的花芽发育   总被引:8,自引:1,他引:7  
对黄花杓兰(Cypripedium flavum P.F.Hunt et Summerh.)成年植株做了一个生长季的研究,提出了一年芽、二年芽和多年休眠芽的概念。指出由芽形成到植株开花需两年时间,其具体发育路线是:第一年6-7月份,根状茎顶端二年芽基部外侧有两个新的小芽产生,即“一年芽”,至9-10月份发育出7-9片幼叶,然后随气温下降停止生长;第2年4月份复苏,即为“二年芽”,二年芽在本生长季内发育成混合芽,但一般情况下只有一个充分发育,另一个未能充分发育并且一般将来也不再有发育的机会,被称为“多年休眠芽”;第3年5月份充分发育的二年芽长出地面,形成植株,迅速开花、结果,至9月底植株枯萎。本文还讨论了黄花杓兰发育过程与环境的关系。  相似文献   

19.
The flowering response of axillary buds of seedlings of Pharbitis nil Choisy, cv. Violet, was examined in relation to the timing of apical bud removal (plumule including the first leaf or second leaf) before or after a flower-inductive 16-h dark period. When the apical bud was removed well before the dark period, flower buds formed on the axillary shoots that subsequently developed, but when removed just before, or after, the dark period, different results were observed depending on the timing of the apical bud removal and plant age. In the case of 8-day-old seedlings, fewer flower buds formed on the axillary shoots developing from the cotyledonary node when plumules were removed 20 to 0 h before the dark period. When the apical bud was removed after the dark period, no flower buds formed. Using 14-day-old seedlings a similar reduction of flowering response was observed on the axillary shoots developing from the first leaf node when the apical bud was removed just after the dark period. To further elucidate the relationship between apical dominance and flowering, kinetin or IAA was applied to axillary buds or the cut site where the apical bud was located. Both chemicals influenced flowering, probably by modulating apical dominance which normally forces axillary buds to be dormant.  相似文献   

20.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号