首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adeno-associated virus (AAV) vector system is based on nonpathogenic and helper-virus-dependent parvoviruses. The vector system offers safe, efficient, and long-term in vivo gene transfer in numerous tissues. Clinical trials using AAV vectors have demonstrated vector safety as well as efficiency. The increasing interest in the use of AAV for clinical studies demands large quantities of vectors and hence a need for improvement in vector production. The commonly used transient-transfection method, although versatile and free of adenovirus (Ad), is not cost-effective for large-scale production. While the wild-type-Ad-dependent AAV producer cell lines seem to be cost-effective, this method faces the problem of wild-type Ad contamination. To overcome these shortcomings, we have explored the feasibility of creating inducible AAV packaging cell lines that require neither transfection nor helper virus infection. As a first step toward that goal, we have created a cell line containing highly inducible Ad E1A and E1B genes, which are essential for AAV production. Subsequently, the AAV Rep and Cap genes and an AAV vector containing a green fluorescent protein (GFP) reporter gene were stably introduced into the E1A-E1B cell line, generating inducible AAV-GFP packaging cell lines. Upon induction of E1A and E1B genes and infection with replication-defective Ad with E1A, E1B, and E3 deleted, the packaging cells yielded high-titer AAV-GFP vectors. Finally, the E2, E4, and VA genes of Ad, under the control of their endogenous promoters, were also introduced into these cells. A few producer cell lines were obtained, which could produce AAV-GFP vectors upon simple drug induction. Although future improvement is necessary to increase the stability and vector yield of the cells, our study has nonetheless demonstrated the feasibility of generating helper-virus-free inducible AAV producer cell lines.  相似文献   

2.
Collaco RF  Cao X  Trempe JP 《Gene》1999,238(2):397-405
Adeno-associated virus (AAV) is a human parvovirus that is currently receiving widespread attention for its potential use as a gene therapy vector. Construction of the recombinant AAV vector (rAAV) involves replacing most of the viral genome with a transgene of interest and then packaging this recombinant genome into an infectious virion. Most current protocols for generating rAAV entail the co-transfection of a vector plasmid and a packaging plasmid that expresses the viral replication and structural genes onto adenovirus (Ad) infected cells growing in culture. Limitations of this procedure include (1) contamination of rAAV with the Ad helper virus, (2) low yields of rAAV and (3) production of replication-competent AAV. In this report we describe new helper plasmids (pSH3 and pSH5) that eliminate the Ad co-infection requirement. The helper plasmids express the AAV rep and cap genes and the Ad E2A, VAI and E4 genes. When the helper plasmids are co-transfected onto human 293 cells with a vector plasmid in the absence of Ad infection, the rAAV vector yield is up to 80-fold greater than those obtained with the pAAV/Ad packaging plasmid. Moreover, replication competent AAV in the rAAV preparations is less than 0.00125%. The major advantages of this system are (1) the absence of infectious adenovirus and (2) the use of only two plasmids, which enhances transfection efficiencies and hence vector production. We believe that this two-plasmid transfection system will allow for more widespread use of the AAV vector system because of its simplicity and high yields. This system will be especially useful for preclinical analyses of multiple rAAV vectors.  相似文献   

3.
Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate that an HSV-1 amplicon expressing the AAV-2 genes rep and cap along with HSV-1 helper functions supports the replication and packaging of rAAV vectors in a scaleable process.  相似文献   

4.
One of the limitations of recombinant adeno-associated virus (rAAV) vector systems for gene therapy applications has been the difficulty in producing the vector in sufficient quantity for adequate evaluation. Since the AAV Rep proteins are cytotoxic, it is not easy to establish stable cell lines that express them constitutively. We describe a novel 293-derived prepackaging cell line which constitutively expresses the antisense rep/cap driven by a loxP-flanked CMV promoter. This cell line was converted into a packaging cell line expressing Rep/Cap for rAAV vector production through adenovirus-mediated introduction of a Cre recombinase gene. Without the introduction of the Cre recombinase gene, the cell line was shown to produce neither Rep nor Cap. rAAV vector was produced (1 x 10(9) genome copies/3.5-cm dish) 4 days after the transduction with Cre-expression adenovirus vector together with transfection of AAV vector plasmid. We further showed that the addition of Cap-expression adenovirus vector caused a 10-fold increase in the yield of rAAV vector. This system is also capable of producing rAAV as a transfection-free system by using a small amount of rAAV instead of vector plasmid.  相似文献   

5.
Although vectors based on adeno-associated virus (AAV) offer several unique advantages, their usage has been hampered by the difficulties encountered in vector production. In this report, we describe a new AAV packaging system based on inducible amplification of integrated helper and vector constructs containing the simian virus 40 (SV40) replication origin. The packaging and producer cell lines developed express SV40 T antigen under the control of the reverse tetracycline transactivator system, which allows inducible amplification of chromosomal loci linked to the SV40 origin. Culturing these cells in the presence of doxycycline followed by adenovirus infection resulted in helper and vector gene amplification as well as higher vector titers. Clonal producer cell lines generated vector titers that were 10 times higher than those obtained by standard methods, with approximately 104 vector particles produced per cell. These stocks were free of detectable replication-competent virus. The lack of a transfection step combined with the reproducibility of stable producer lines makes this packaging method ideally suited for the large-scale production of vector stocks for human gene therapy.  相似文献   

6.
Adeno-associated viral (AAV) vectors are used for in vivo gene transfer in a number of preclinical models of genetic diseases (including large-animal models) and are currently being tested in clinical trials for treatment of hemophilia B and cystic fibrosis. Protocols for production of AAV vectors in a helper virus-free system are available and are based on transient transfection of HEK-293 cells with multiple plasmids. Scale-up of vector production has been labor intensive and inefficient because of a lack of larger culture vessels suitable for growth of adherent cells, large-scale transfection, and vector production. Here we report efficient production of AAV vector in roller bottles, which represents a 10-fold scale-up from the conventional flask or plate method. Optimized production yielded greater than 10(13) vector genomes per bottle and was as cost effective as published protocols using plates. Successful vector production by this method was dependent on optimization of transfection by calcium phosphate precipitation, of monitoring of cell growth (by measurement of glucose consumption), of cell culture conditions, and CO2/air exchange with the culture vessel.  相似文献   

7.
The majority of recombinant adeno-associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale-up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa-based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3-based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3-4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity-based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time-efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.  相似文献   

8.
Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.  相似文献   

9.
Scalable and efficient production of high-quality recombinant adeno-associated virus (rAAV) for gene therapy remains a challenge despite recent clinical successes. We developed a new strategy for scalable and efficient rAAV production by sequestering the AAV helper genes and the rAAV vector DNA in two different subcellular compartments, made possible by using cytoplasmic vaccinia virus as a carrier for the AAV helper genes. For the first time, the contamination of replication-competent AAV particles (rcAAV) can be completely eliminated in theory by avoiding ubiquitous nonhomologous recombination. Vector DNA can be integrated into the host genomes or delivered by a nuclear targeting vector such as adenovirus. In suspension HeLa cells, the achieved vector yield per cell is similar to that from traditional triple-plasmid transfection method. The rcAAV contamination was undetectable at the limit of our assay. Furthermore, this new concept can be used not only for production of rAAV, but also for other DNA vectors.  相似文献   

10.
BACKGROUND: The potential of lentiviral vectors for clinical gene therapy has not yet been evaluated. One of the reasons is the cytotoxicity of lentiviral packaging genes which makes the generation of stable producer cell lines difficult. Therefore, a novel packaging system for lentiviral vectors based on transient expression of packaging genes by recombinant adenoviruses was developed. METHODS: Adenoviral vectors expressing VSV-G, codon-optimized HIV-1 gag-pol, and codon-optimized SIV gag-pol under the control of a tetracycline-regulatable promoter (adenoviral lenti-pack vectors) were constructed and the production levels of this vector system were evaluated. RESULTS: The generated adenoviral lenti-pack vectors could be grown to high titers when transgene expression was suppressed and no evidence for instabilities was obtained. Cells stably transfected with a SIV-based vector construct were converted into lentiviral vector producer cells by infection with the adenoviral lenti-pack vectors. Lentiviral vector titers obtained were as high as vector titers obtained by transient cotransfection experiments. A protocol was developed that allowed preparation of lentiviral vector stocks with undetectable levels of contaminating adenoviral lenti-pack vectors. CONCLUSIONS: The adenoviral lenti-pack vectors described should provide a convenient alternative approach to inducible packaging cell lines for large-scale lentiviral vector production. Transient expression of cytotoxic lentiviral packaging genes by the adenoviral lenti-pack vectors circumvents loss of titers during prolonged culture of packaging cell lines. The design of the adenoviral lenti-pack vectors should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the lentiviral vector constructs that can be packaged.  相似文献   

11.
Manufacturing practices for recombinant adeno‐associated viruses (AAV) have improved in the last decade through the development of new platforms in conjunction with better production and purification methods. In this review, we discuss the advantages and limitations of the most popular systems and methods employed with mammalian cell platforms. Methods and systems such as transient transfection, packaging and producer cells and adenovirus and herpes simplex virus are described. In terms of best production yields, they are comparable with about 104–105 vector genomes produced per cell but transient transfection of HEK293 cells is by far the most commonly used. For small‐scale productions, AAV can be directly purified from the producing cell lysate by ultracentrifugation on a CsCl or iodixanol‐step gradient whereas large‐scale purification requires a combination of multiple steps. Micro/macrofiltration (i.e. including tangential flow filtration and/or dead‐end filtration) and chromatography based‐methods are used for large‐scale purification. Purified AAV products must then be quantified and characterized to ensure quality. Recent purification methods and current analytical techniques are reviewed here. Finally, AAV technology is very promising, but manufacturing improvements are still required to meet the needs of affordable, safe and effective AAV vectors essential for licensing of gene therapy clinical protocols.  相似文献   

12.
Cao L  Liu Y  During MJ  Xiao W 《Journal of virology》2000,74(24):11456-11463
Recombinant adeno-associated virus (rAAV) is capable of directing long-term, high-level transgene expression without destructive cell-mediated immune responses. However, traditional packaging methods for rAAV vectors are generally inefficient and contaminated with replication-competent AAV (rcAAV) particles. Although wild-type AAV is not associated with any known human diseases, contaminating rcAAV particles may affect rAAV gene expression and are an uncontrolled variable in many AAV gene transfer studies. In the current study, a novel strategy was designed to both optimize AAV rep gene expression and increase vector yield, as well as simultaneously to diminish the potential of generating rcAAV particles from the helper plasmid. The strategy is based on the insertion of an additional intron in the AAV genome. In the AAV infectious clone, the intron insertion had no effects on the properties of Rep proteins expressed. Normal levels of both Rep and Cap proteins were expressed, and the replication of the AAV genome was not impaired. However, the generation of infectious rcAAV particles using intronized AAV helper was greatly diminished, which was due to the oversized AAV genome caused by the insertion of the artificial introns. Moreover, the rAAV packaging was significantly improved with the appropriate choice of intron and insertion position. The intron is another element that can regulate the rep and cap gene expression from the helper plasmid. This study provides for a novel AAV packaging system which is highly versatile and efficient. It can not only be combined with other AAV packaging systems, including rep-containing cell lines and herpes simplex virus hybrid packaging methods, but also be used in other vector systems as well.  相似文献   

13.
Long-term recombinant AAV (rAAV) transgene expression in muscle has been associated with the molecular conversion of single-stranded rAAV genomes to high-molecular-weight head-to-tail circular concatamers. However, the mechanisms by which these large multimeric concatamers form remain to be defined. To this end, we tested whether concatamerization of rAAV circular intermediates occurs through intra- or intermolecular mechanisms of amplification. Coinfection of the tibialis muscle of mice with rAAV alkaline phosphatase (Alkphos)- and green fluorescent protein (GFP)-encoding vectors was used to evaluate the frequency of circular concatamer formation by intermolecular recombination of independent viral genomes. The GFP shuttle vector also encoded ampicillin resistance and contained a bacterial origin of replication to allow for bacterial rescue of circular intermediates from Hirt DNA of infected muscle samples. The results demonstrated a time-dependent increase in the abundance of rescued plasmids encoding both GFP and Alkphos, which reached 33% of the total circular intermediates by 120 days postinfection. Furthermore, these large circular concatamers were capable of expressing both GFP- and Alkphos-encoding transgenes following transient transfection in cell lines. These findings demonstrate that concatamerization of AAV genomes in vivo occurs through intermolecular recombination of independent monomer circular viral genomes and suggest new viable strategies for delivering multiple DNA segments at a single locus. Such developments will expand the utility of rAAV for splicing large gene inserts or large promoter-gene combinations carried by two or more independent rAAV vectors.  相似文献   

14.
在以病毒载体介导的基因治疗研究中,重组腺相关病毒(rAAV)因其疗效和安全性方面的优势,是最有临床应用前景的载体。但其转基因包装容量一般不能超过5.0kb,给需要转导大片段基因的应用带来了困难,限制了rAAV在基因治疗研究中的应用。随着对rAAV细胞转导生物学过程研究的不断深入,发现了一些可以突破rAAV包装容量限制的技术,如反式剪接和同源重组策略,为拓展该载体应用范围提供了可能性。另外,rAAV包装容量限制的特点还可以被用来减少生产过程中具有可复制能力的类病毒杂质的污染,为rAAV的临床安全性提供了保障。  相似文献   

15.
Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 10(13) rAAV particles and, more importantly, up to 10(11) infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor.  相似文献   

16.
The large-scale production of clinical-grade lentiviral vectors (LVs) for gene therapy applications is a remaining challenge. The use of adherent cell lines and methods like transient transfection are cost-intensive and hamper process scalability as well as reproducibility. This study describes the use of two suspension-adapted stable packaging cell lines, called GPRGs and GPRTGs, for the development of a scalable and serum-free LV production process. Both stable packaging cell lines are based on an inducible Tet-off system, thus requiring doxycycline removal for initiation of the virus production. Therefore, we compared different methods for doxycycline removal and inoculated three independent 5 L bioreactors using a scalable induction method by dilution, an acoustic cell washer and manual centrifugation. The bioreactors were inoculated with a stable producer cell line encoding for a LV carrying a clinically relevant gene. LV production was performed in perfusion mode using a cell retention device based on acoustic wave separation. Comparable cell-specific productivities were obtained with all three methods and cumulative functional yields up to 6.36 × 1011 transducing units per bioreactor were generated in a 234-h long process, demonstrating the usability of stable Tet-off cell lines for an easily scalable suspension process. Remarkably, cell viabilities >90% were maintained at high cell densities without compromising productivity throughout the whole process, allowing to further extend the process time. Given its low effects of toxicity during virus production, the presented cell lines are excellent candidates to develop a fully continuous LV production process to overcome the existing bottlenecks in LV manufacturing.  相似文献   

17.
Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.  相似文献   

18.
Wu M  Mergia A 《Journal of virology》1999,73(5):4498-4501
Foamy viruses are nonpathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. We have previously demonstrated the utility of simian foamy virus type 1 (SFV-1) as a vector system by transient expression assay (M. Wu et al., J. Virol. 72:3451-3454, 1998). In this report, we describe the first stable packaging cell lines for foamy virus vectors based on SFV-1. We developed two packaging cell lines in which the helper DNA is placed under the control of either a constitutive cytomegalovirus (CMV) immediate-early gene or inducible tetracycline promoter for expression. Although the constitutive packaging expressing cell line had a higher copy number of packaging DNA, the inducible packaging cell line produced four times more vector particles. This result suggested that the structural gene products in the constitutively expressing packaging cell line were expressed at a level that is not toxic to the cells, and thus vector production was reduced. The SFV-1 vector in the presence of vesicular stomatitis virus envelope protein G (VSV-G) produced an insignificant level of transduction, indicating that foamy viruses could not be pseudotyped with VSV-G to generate high-titer vectors. The availability of stable packaging cell lines represents a step toward the use of an SFV-1 vector delivery system that will allow scaled-up production of vector stocks for gene therapy.  相似文献   

19.
Recombinant retroviruses are now an established tool for gene delivery. Presently they are mainly produced using adherent cells. However, due to the restrictive nature of adherent cell culture, this mode of production is hampered by low cell-specific productivity and small production units. The large-scale production of retroviral vectors could benefit from the adaptation of retrovirus packaging cell lines to suspension culture. Here, we describe the ability of a 293 packaging cell line to produce retroviral vectors in suspension culture at high titer. Adherent 293GPG cells, producing a Moloney Murine Leukemia Virus (MoMLV) retrovirus vector pseudotyped with the vesicular stomatitis virus G (VSVG) envelope protein and expressing a TK-GFP fusion protein, were adapted to suspension culture in calcium-free DMEM. At a cell density similar to adherent cell culture, the suspension culture produced retroviral vector consistently in the range of 1 x 10(7) infectious viral particles/mL (IVP/mL), with a specific productivity threefold higher than adherent culture. Furthermore, at the same medium replacement frequency, the suspension producer cells could be cultured at higher density than their adherent counterparts, which resulted in virus titer of 3-4 x 10(7) IVP/mL at 11.0 x 10(6) cells/mL. This corresponds to a 10-fold increase in viral concentration compared to adherent cells. The capacity to up scale the retroviral vector production was also demonstrated by performing a 2 VVD perfusion culture for 9 days in a 3L Chemap bioreactor. The combination of suspension and perfusion led to a 20-fold increase in maximum virus productivity compared to the adherent culture.  相似文献   

20.
BACKGROUND: Cell-based therapies for treating insulin-dependent diabetes (IDD) can provide a more physiologic regulation of blood glucose levels in a less invasive fashion than insulin injections. Previously, we developed an engineered human enteroendocrine L-cell model for regulated insulin release via recombinant adeno-associated virus serotype 2, or rAAV2, transduction. The aim of this study was to evaluate the efficiency and selectivity of rAAV2-mediated insulin gene delivery to enteroendocrine L-cells in co-culture with a prevailing number of enterocytes, which are the predominant cell type in intestinal epithelium. METHODS: We tested rAAV2 transduction in pure and co-culture models of human cell lines of enterocytes (Caco-2 and T84 cell lines) and enteroendocrine L-cells (NCI-H716 cell line). Non-viral, chemical-mediated transfection was used as a control. Transduced and transfected co-cultures were subjected to insulin secretion studies. RESULTS: In pure cultures, rAAV2 exhibited a low transduction efficiency towards both Caco-2 and T84 enterocytes, as opposed to a strong reporter expression in permissive NCI-H716 L-cells. In co-cultures of NCI-H716 L-cells and Caco-2 or T84 enterocytes, rAAV2 exhibited differential transduction efficiency with a strong preference towards NCI-H716 L-cells. The rAAV2-transduced co-culture achieved regulated insulin release against stimulation, whereas the chemically transfected co-culture failed to respond. CONCLUSIONS: This study demonstrated that rAAV2-mediated insulin gene transfer can differentiate human intestinal cell types in vitro, in particular enterocyte and enteroendocrine L-cell lines. We consider the AAV2 vector a useful tool in developing enteroendocrine L-cell-specific insulin gene delivery for IDD treatment, in terms of AAV2 avoiding enterocytes and targeting selectively L-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号