首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary In Drosophila melanogaster a partial loss of ribosomal genes leads to the bobbed phenotype. Magnification is a heritable increase in rDNA that may occur in males carrying a deleted X chromosome with a strong bobbed phenotype. The restriction patterns of X chromosome total rDNA, insertions and spacers from magnified bobbed strains were compared with those of the original bobbed mutations. It was found that magnification modifies restriction patterns and differentially affects gene types, increasing specific genes lacking insertions (INS-). Increases in copy number of genes with type I insertions are generally lower than the total number of INS- genes, while type II insertion genes are not perceptibly increased. The recovery of homogeneous progeny from a single premagnified male indicates that the magnification event might take place and become stable very early in the germ line, arguing against magnification being due to extrachromosomal amplification. Additionally, some gene types increase 3.5-fold while others are eliminated, indicating that they could not result from a single unequal cross-over. These results are in good agreement with the existence of partial clustering of rDNA genes according to type, and suggest that magnification could result from local amplification of genes.  相似文献   

3.
We have examined the distribution of sequences homologous to the type I and type II rDNA insertions of Drosophila melanogaster in its sibling species. Each of the six species we have examined has sequences homologous to the type I insertion, which have undergone extensive divergence by the criterion of their EcoRI, BstI and HindIII restriction patterns. We have isolated cosmid clones containing type I sequences from D. simulans and D. mauritiana, the two species most closely related to D. melanogaster. Southern hybridisation analysis of these clones indicates that, as in D. melanogaster, the type I sequences can exist independently of rDNA and can also dissociate to give sub-components homologous to the right hand segment of the D. melanogaster type I insertion. The type II sequences, on the other hand are present in five out of the six species, but their restriction endonuclease cleavage profile is highly conserved. The differences in the degree of conservation of the two types of insertion sequence are discussed.  相似文献   

4.
J G Reilly  C A Thomas 《Plasmid》1980,3(2):109-115
We have studied the mitochondrial DNA in three wild type laboratory strains of Drosophila melanogaster, ry+5 and two Oregon R-substrains, called here R and E. Lengths of the restriction bands for EcoRI, BglII, HpaII, MspI, HaeIII, and HindIII were compared. The number of restriction sites was identical in all strains, with the exception of an extra HaeIII site in ry+5. Careful comparison of restriction fragment lengths showed that bands containing the AT-rich region were different in length among all strains. The laboratory strains, ry+5, proved to be a mixture of strains carrying different mtDNAs; these separated into substrains G1 and G2 in the progeny of single pair matings. Adult progeny of reciprocal crosses of G1 and R were analyzed by HaeIII restriction digestion. The results demonstrated maternal inheritance for both the extra restriction site and band containing the AT-rich region.  相似文献   

5.
Drosophila RNA polymerases I &; II were used to transcribe a recombinant bacterial plasmid containing one copy of Drosophila ribosomal DNA. Both supercoiled and relaxed, closed circular plasmids were used. With Mg+2 as the divalent cation, enzyme I is much more active on both forms of the plasmid; the relaxed form in particular supports almost no RNA synthesis by enzyme II. When Mn+2 is present, differences in template efficiencies are minimal. The differences observed in the absence of Mn+2 seem to depend only on different preferences for the physical state of the template and not on recognition of specific promotor sequences, since enzyme I shows no strand selection when transcribing these plasmids.  相似文献   

6.
7.
The sex-linked Pgd + and Zw + genes of Drosophila melanogaster and their associated enzyme activities 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase were employed in an analysis of the relationship between dosage compensation and the location of genes in the genome. In the genotypes examined, the enzyme activity specified by each copy of the gene is twice in males what it is in females. This is true of normal, structurally rearranged, and duplication genotypes. Dosage compensation, therefore, is a regulatory function associated with single structural genes or small chromosomal segments and does not depend on the gene's physical location on the X chromosome.This research was supported by NIH Grant No. 5-R01-HD04859.  相似文献   

8.
Distribution of the enzyme aldehyde oxidase (AO) within the pouch of the mature wing disc is precise and differential. General locations of compartmental boundaries have been identified by fate mapping and studies of AO distribution. The suspected locations of the boundaries were verified by analyzing the distribution of AO-negative cells within an AO-stained background in gynandromorphs and in X-ray-induced clones of AO-negative cells. The anterior/posterior border appeared slightly anterior to the junction of the AO+ anterior presumptive wing surfaces and AO? posterior wing surfaces. A narrow band of AO+ cells extending proximodistally on both presumptive wing surfaces belongs to the posterior compartment. Two dorsal/ventral (dor./vent.) restrictions were found. The dor./vent. restriction equivalent to the dor./vent. border found in the adult wing was located at the ventral most edge of the AO-stained presumptive wing margin. A second restriction which was less strictly obeyed was found on the dorsal edge of the wing margin. We conclude that the whole presumptive wing margin is part of the dorsal compartment. Within the anterior wing margin an intensively stained oval was also found to be clonally restrictive. Therefore, territories were found within the prospective wing margin for which no such features have been identified in the adult Drosophila melanogaster wing.  相似文献   

9.
The size of RNA molecules that are intermediates in the processing of ribosomal RNA in Drosophila melanogaster has been determined by gel electrophoresis under fully denaturing conditions. These molecules have been characterized by transfer from agarose gels to diazobenzyloxymethyl-paper and hybridization with restriction fragments derived from cloned ribosomal DNA. Five cleavage sites leading to the production of 18 S and 28 S RNA have been mapped in the precursor. The first cleavage in the precursor molecule occurs at one of two different sites. Therefore, we propose two alternative pathways for the processing of D. melanogaster ribosomal RNA. A precursor molecule to 2 S and 5.8 S ribosomal RNA has been identified in nuclear RNA.  相似文献   

10.
A microhybridization technique is described which requires only 1% of the starting material normally needed for filter-bound methods. Employing this technique, we have investigated the disproportionate replication (compensation) of ribosomal DNA in larval and adult stages of two strains of Drosophila melanogaster. Both stages of the Oregon R strain demonstrate XO compensation while neither stage of Canton S shows a significant elevation of ribosomal DNA content in XOs. It is demonstrated that the lack of disproportionate replication in the latter strain does not result from the absence of the genetic site cr+ which normally controls this process.  相似文献   

11.
Somatic mutation and recombination test on wing cells of Drosophila melanogaster showed that the recombination frequency in the somatic tissues of strains studied correlated with the presence of a full-length copy of the hobo transposable element in the genome. Transposition of hobo in somatic tissue cells at a frequency 3.5 × 10?2 per site per X chromosome was shown by fluorescence in situ hybridization with salivary gland polytene chromosomes of larvae of one of the D. melanogaster strains having a full-length hobo copy.  相似文献   

12.
The formation of ribosomal DNA (rDNA) not associated with the nucleolar organizer (NO) regions was studied in polytene cells of Drosophila melanogaster mutants, mal 12 and bb 2rl , heterozygous for deficiencies in the NO. In the mutant X chromosome mal 12 a smaller part of the NO is deleted than in bb 2rl but it comprises the compensatory response (cr) locus, controlling the compensatory synthesis of rDNA. We found that in the polytene cells of all tissues of mutant X/Xmal 12 investigated (larval salivary gland, fat body and midgut; adult fly midgut) the number of nucleoli was increased compared with that in the corresponding cells of X/Xbb 2rl and X/X (wild type). Using in situ hybridization we showed that in the salivary gland cells of the X/Xmal 12 larvae chromosomal sites containing type I insertion sequences and scattered throughout the genome were more frequent than in the wild type and in X/Xbb 2rl mutant cells.  相似文献   

13.
14.
The enzyme alcohol dehydrogenase (ADH) fromseveral naturally occurring ADH variants ofDrosophila melanogaster and Drosophilasimulans was isolated. Affinity chromatography withthe ligand Cibacron Blue and elution with NAD+ showed similarbehavior for D. melanogaster ADH-FF, ADH-71k,and D. simulans ADH. Introduction of a secondCibacron Blue affinity chromatography step, withgradient elution with NAD+, resulted in pure and stable enzymes. D.melanogaster ADH-SS cannot be eluted from theaffinity chromatography column at a high concentrationof NAD+ and required a pH gradient for itspurification, preceded by a wash step with a high concentration ofNAD+. Hybrid Drosophila melanogasteralcohol dehydrogenase FS has been isolated fromheterozygous flies, using affinity chromatography withfirst elution at a high concentration NAD+, directlyfollowed by affinity chromatography elution with a pHgradient. Incubation of equal amounts of pure homodimersof Drosophila melanogaster ADH-FF and ADH-SS,in the presence of 3 M urea at pH 8.6, for 30 min at roomtemperature, followed by reassociation yielded activeDrosophila melanogaster ADH-FS heterodimers. Noproteolytic degradation was found after incubation ofpurified enzyme preparations in the absence or presenceof SDS, except for some degradation of ADH-SS after verylong incubation times. The thermostabilities of D.melanogaster ADH-71k and ADH-SS were almostidentical and were higher than those of D.melanogaster ADH-FF and D. simulans ADH. Thethermostability of D. melanogaster ADH-FS waslower than those of D. melanogaster ADH-FF andADH-SS. D. melanogaster ADH-FF and ADH-71k have identical inhibition constantswith the ligand Cibacron Blue at pH 8.6, which are twotimes higher at pH 9.5. The Ki values forD. simulans ADH are three times lower at bothpH values. D. melanogaster ADH-SS and ADH-FS havesimilar Ki values, which are lower than thosefor D. melanogaster ADH-FF at pH 8.6. But at pH9.5 the Ki value for ADH-FS is the same as atpH 8.6, while that of ADH-SS is seven times higher. Kinetic parameters ofDrosophila melanogaster ADH-FF, ADH-SS, andADH-71k and Drosophila simulans ADH, at pH 8.6and 9.5, showed little or no variation inKm eth values. TheKm NAD values measured at pH 9.5for Drosophila alcohol dehydrogenases are alllower than those measured at pH 8.6. The rate constants(kcat) determined for all fourDrosophila alcohol dehydrogenases are higher at pH 9.5 than at pH 8.6. D.melanogaster ADH-FS showed nonlinear kinetics.  相似文献   

15.
The evagination of imaginal disks of Drosophila melanogaster is induced in vitro by β-ecdysone and inhibited by juvenile hormone. The possibility that these hormones act by changing intracellular Na+ and K+ levels was investigated by studying their effects on the sodium-potassium dependent adenosinetriphosphatase (NaK ATPase), an enzyme with a major rôle in regulating Na+ and K+ levels in cells. We find that β-ecdysone has no effect on this enzyme and can induce evagination even when intracellular Na+ concentrations are increased 2 to 3 fold by ouabain. Juvenile hormone stimulates the enzyme, but still acts to inhibit evagination when NaK ATPase activity is inhibited by ouabain. We conclude that the actions of β-ecdysone and juvenile hormone on imaginal disk evagination do not directly involve the NaK ATPase or require specific changes in Na+ and K+ concentrations.  相似文献   

16.
Minos as a genetic and genomic tool in Drosophila melanogaster   总被引:2,自引:0,他引:2       下载免费PDF全文
Much of the information about the function of D. melanogaster genes has come from P-element mutagenesis. The major drawback of the P element, however, is its strong bias for insertion into some genes (hotspots) and against insertion into others (coldspots). Within genes, 5′-UTRs are preferential targets. For the successful completion of the Drosophila Genome Disruption Project, the use of transposon vectors other than P will be necessary. We examined here the suitability of the Minos element from Drosophila hydei as a tool for Drosophila genomics. Previous work has shown that Minos, a member of the Tc1/mariner family of transposable elements, is active in diverse organisms and cultured cells; it produces stable integrants in the germ line of several insect species, in the mouse, and in human cells. We generated and analyzed 96 Minos integrations into the Drosophila genome and devised an efficient “jump-starting” scheme for production of single insertions. The ratio of insertions into genes vs. intergenic DNA is consistent with a random distribution. Within genes, there is a statistically significant preference for insertion into introns rather than into exons. About 30% of all insertions were in introns and ~55% of insertions were into or next to genes that have so far not been hit by the P element. The insertion sites exhibit, in contrast to other transposons, little sequence requirement beyond the TA dinucleotide insertion target. We further demonstrate that induced remobilization of Minos insertions can delete nearby sequences. Our results suggest that Minos is a useful tool complementing the P element for insertional mutagenesis and genomic analysis in Drosophila.  相似文献   

17.
Sequences in the cloned Drosophila melanogaster rDNA fragments described by Dawid et al. (1978) were compared by heteroduplex mapping. The nontranscribed spacer regions in all fragments are homologous but vary in length. Deletion loops were observed at variable positions in the spacer region suggesting that spacers are internally repetitious.Many rDNA repeats in D. melanogaster have a 28 S gene interrupted by a region named the ribosomal insertion. Insertions of 0.5, 1 and 5 kb were found in repeat-length EcoRI fragments. These DNA regions, named type 1 insertions, are homologous at their right ends. Although 1 kb insertions are quite precisely twice as large as 0.5 kb insertions they do not represent a duplication of the shorter sequence. Some insertions have at least one EcoRI site and therefore yield EcoRI fragments which are only part of a repeat. The sequences in two cloned right-hand partial insertion sequences are homologous, but the sequences in two lefthand partial insertions are not. None of the EcoRI-restrictable insertion sequences has any homology to any part of type 1 insertions; they are thus grouped together as type 2. Evidence for insertion sequences of at least two types in uncloned rDNA was obtained by annealing a cloned fragment with a 1 kb insertion to genomic rDNA. About 15% of the rDNA repeats show substitution type loops between the 1 kb type 1 insertion derived from the cloned fragment and type 2 insertions in the rDNA.  相似文献   

18.
A library of Calliphora vicina genomic DNA was constructed in the λEMBL3 vector and screened for recombinant phages containing chromosomal segments encoding calliphorin, the major larval serum protein (LSP) of Calliphora. A large series of recombinants hybridizing with in vitro labelled poly(A)+ RNA from Calliphora larval fat bodies and with specific probes derived from the LSP-1 genes of Drosophila melanogaster was isolated. Five of these phages, chosen at random, were shown by hybrid selection to retain calliphorin mRNA specifically. Eleven calliphorin mRNA-homologous regions were located on restriction maps of these phages by hybridization with 5' end-labelled poly(A)+ RNA from Calliphora larval fat bodies. Each phage contains at least two calliphorin genes arranged in direct repeat orientation and seperated by 3.5–5 kb intergenic regions. The genes display similar but not identical restriction patterns. Filter hybridization and heteroduplex analysis indicate that they share a detectable homology with the LSP-1β gene of D. melanogaster. Whole genome Southern analysis showed that these genes belong to a large family of closely related calliphorin genes which were found by in situ hybridization to polytene chromosomes of trichogen cells to be clustered in region 4a of chromosome 2 of Calliphora vicina.  相似文献   

19.
Summary Chromosomal sites which have DNA homology to the 1 kb (kilobase pair) BamHI restrictable fragment of the 5 kb type I insertion present in many ribosomal genes in Drosophila melanogaster, were identified by using in situ hybridization and autoradiography. XX and XY complements of polytene chromosomes showed the nucleolus and chromocenter to be heavily labeled. Of the light label over euchromatic regions, the 102C band of chromosome 4 labeled particularly intensely. In mitotic XX and XY complements, the NORs (nucleolus organizer regions) of both sex chromosomes labeled as did the centromeric heterochromatin of autosomes. Label also appeared less frequently over telomeric and euchromatic regions.  相似文献   

20.
The cleavage of Drosophila melanogaster DNA by restriction endonucleases   总被引:2,自引:2,他引:0  
Drosophila melanogaster DNA, together with λ and E. coli DNAs as controls, was digested with three different restriction endonucleases: EcoRI, Hind, and Hae. The size distributions of the segments were characterized by gel electrophoresis. More than 85% of the D. melanogaster DNA was found in a broad distribution of segment lengths consistent with random location of restriction sites. However, some DNA was spared and recovered in very long (≥20500bp) segments. These segments proved to be mostly simple sequence DNA. No complex spared segments could be found in Hind and Hae digests, while 50% of the spared EcoRI segments had a complexity exceeding that of the E. coli DNA spared by this enzyme. These data do not support the hypothesis that chromomeres contain long regions of purely tandemly repeating sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号