首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Summary In Drosophila melanogaster a partial loss of ribosomal genes leads to the bobbed phenotype. Magnification is a heritable increase in rDNA that may occur in males carrying a deleted X chromosome with a strong bobbed phenotype. The restriction patterns of X chromosome total rDNA, insertions and spacers from magnified bobbed strains were compared with those of the original bobbed mutations. It was found that magnification modifies restriction patterns and differentially affects gene types, increasing specific genes lacking insertions (INS-). Increases in copy number of genes with type I insertions are generally lower than the total number of INS- genes, while type II insertion genes are not perceptibly increased. The recovery of homogeneous progeny from a single premagnified male indicates that the magnification event might take place and become stable very early in the germ line, arguing against magnification being due to extrachromosomal amplification. Additionally, some gene types increase 3.5-fold while others are eliminated, indicating that they could not result from a single unequal cross-over. These results are in good agreement with the existence of partial clustering of rDNA genes according to type, and suggest that magnification could result from local amplification of genes.  相似文献   

2.
The nucleolus organizer (NO) of the D. melanogaster X chromosome is composed of ribosomal repeat units which contain two types (I and II) of non-rDNA insertions (In+) and repeats with no insertions (In-). Evidence from other laboratories indicate random interspersion of all types of repeat units within the X NO. An EcoRI and BamHI examination of rDNA from two bobbed mutants, bb2rI and mal12 demonstrates segregation of the major type I repeat units. The 46 rDNA repeats of the bb2rI NO contain no detectable major type I repeats whereas the majority of the 68 rDNA mal12 repeats are major type I and tandemly linked. This observation suggests that gross deletions of rDNA can result in nucleolus organizer regions with predominantly one type of repeat unit. Additivity tests demonstrate that the 46 ribosomal repeats of the bb2rI chromosome revert the phenotype of other bobbed NOs, but the 68 mal12 ribosomal repeats show no or slight additivity. This is in agreement with the observation that In+ repeats do not significantly contribute to functional rRNA. A Southern blot analysis using BamHI which cuts only in type I insertions demonstrates that the majority of major type I In+ repeating units exist in tandem linkage group(s) within the X NO.  相似文献   

3.
4.
To investigate the physical organization of ribosomal RNA genes of two bobbed (bb) loci carried by the Dp(1;f)122 free duplication, a wild type and a deleted one derived from it, genomic DNAs from XXNO-/Dp122bb+ and XXNO-/Dp122bb adult females were analyzed by restriction enzyme digestions. We found that in the bb mutant there was a loss of uninterrupted genes, while genes interrupted by type I and type II insertions remained apparently unchanged. This is an indication that at least in this wild type bb+ locus, carried by the 122 free duplication, the different repeating units are not distributed randomly. In fact, after digestion of the rDNA carried by the bb+ duplication with the enzyme BamHI that cuts only in type I insertions, we have obtained long uncleaved fragments of DNA containing uninterrupted genes.  相似文献   

5.
In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.  相似文献   

6.
7.
8.
Expression of ribosomal DNA insertions in Drosophila melanogaster.   总被引:35,自引:0,他引:35  
E O Long  I B Dawid 《Cell》1979,18(4):1185-1196
  相似文献   

9.
26S and 18S rRNA synthesis in bobbed mutants of Drosophila melanogaster   总被引:1,自引:0,他引:1  
R Terracol  N Prud'homme 《Biochimie》1981,63(5):451-455
For the most part, bobbed mutations of Drosophila melanogaster consist of deletions of 26S and 18S rDNA located on the X and Y chromosomes. Studies on the synthesis of rRNA of third instar larvae and one day old adult females of three severe bobbed genotypes, indicate that no decrease can be detected, compared ot wild type strains. One of the bobbed mutants studied was a rather unusual type: these flies possess a quantity of rDNA that should confer upon them a near wild type phenotype whereas they actually show an extreme bobbed phenotype. The two other bobbed mutants are of a classical type: their severe bobbed phenotype corresponds to large deletions of rDNA. Two hypotheses can be proposed to explain the extreme bobbed phenotype of the flies, in spite of the fact that rRNA synthesis occurs normally. A regulatory phenomenon may interfere at the stages studied, but in earlier stages a net decrease in rRNA synthesis may have occurred producing an irreversible effect in the tissues affected by bobbed mutations (abdominal cuticle, bristles). The second hypothesis is that the rRNA produced may not be functional, perhaps because it is specific of earlier stages.  相似文献   

10.
We have examined the 28S ribosomal genes of the silkmoth, Bombyx mori, for the presence of insertion sequences. Two types of insertion sequences were found, each approximately 5 kb in length, which do not share sequence homology. Comparison of the nucleotide sequences of the junction regions with the uninserted gene reveals that one type of insertion has resulted in a 14 bp duplication of the 28S coding region at the insertion site. The location of this insertion and the 14 bp duplication are identical to that found in the Type I ribosomal insertion element of Drosophila melanogaster. The second type of insertion element is located at a site corresponding to approximately 75 bp upstream of the first type. The location of this insertion, the variability detected at its 5' junction, and a short region of sequence homology at its 3' junction suggest that it is related to the Type II element of D. melanogaster. This is the first example of a Type II-like rDNA insertion outside of sibling species of D. melanogaster, and the first example of a Type I-like rDNA insertion outside of the higher Diptera.  相似文献   

11.
In the ribosomal DNA unit ofPleurotus cornucopiae, the rDNA coding regions are in the order 5, 5S-18S-5.8S-25S, 3, with the 5 location of the 5S gene differing from its 3 location found in other basidiomycetes. The most discriminating probe used to study the rDNA polymorphism consisted of a fragment that included the 5S, 18S and part of the 5.8S and 25S genes flanking three intergenic sequences. A high degree of rDNA polymorphism was observed in the sevenP. cornucopiae dikaryons studied. For the first time within a basidiomycete species, the restrictions maps distinguished two types of rDNA units (I and II). In each rDNA type, length variations in the external intergenic sequence IGS 1 located between the 25S and 5S genes allowed characterization of two different rDNA units in type I and four rDNA units in type II. This suggested that theP. cornucopiae rDNA units were derived from two kinds of ancestors (type I and II) by insertion or deletion events (100–700 bp) in the IGS 1. In four dikaryotic strains, two rDNA units of the same type (I or II) differing only by the IGS 1 length, were found in a similar number of copies, and presented a meiotic segregation in homokaryotic progeny. In one progeny, some homokaryotic strains possessed two different rDNA units: one with a high copy number and another with a lower one, showing that two different rDNA units could coexist in a single nucleus.  相似文献   

12.
13.
The Effect of mei-41 on Rdna Redundancy in DROSOPHILA MELANOGASTER   总被引:2,自引:1,他引:1  
The recombination and repair defective mutant, mei-41, exhibits three rather striking effects on the genetic properties and chromosomal stability of rDNA in Drosophila. First, mei-41 inhibits rDNA magnification. However, mei-9, another recombination and repair defective mutation has no similar effect. This indicates that magnification requires some, but not all, of the gene products necessary for meiotic exchange. Second, under magnifying conditions, mei-41 induces interchanges between the X rDNA and either arm of the Ybb- chromosome. These interchanges occur at high frequency and are independent of rDNA orientation. Third, in mei-41 bb+/Ybb+ males, bobbed mutants in the X, but not the Y, also arise at high frequency. Evidence suggests that these events involve the rDNA type I insertion. The recombination and repair defective properties of mei-41 together with our results regarding its unusual and specific effects involving rDNA are explained in a simple model that has general implications for chromosome structure.  相似文献   

14.
15.
We have isolated cloned segments of ribosomal DNA that have EcoRI restrictable (type II) insertions in their 28 S genes. The type II insertions in these plasmids are homologous sequences and have three characteristic cleavage sites for EcoRI. One of these clones is unusual in that it has undergone a deletion of part of the 28 S gene at or near the site of the type II insertion. A second is unusual in that, in addition to the type II insertion in the rDNA, the transcribed spacer sequences are interrupted by an unidentified sequence. This sequence differs in its arrangement of restriction sites from the sequence that interrupts the transcribed spacer of cDm207 (Glover, 1977). The type II sequences in all these clones share homology with the unusually long ‘insertion’ that interrupts the 28 S gene of cDm207. We have re-examined the nature of the additional sequences linked to the type II sequences of cDm207 and find them to be related to type I rDNA insertion sequences.  相似文献   

16.
rDNA magnification in Drosophila melanogaster is defined experimentally as the ability of bb/Ybb- males to produce exceptional progeny that are wild type with respect to rDNA associated phenotypes. Here, we show that some of these bobbed-plus progeny result not from genetic reversion at the bb locus but rather from variants at two or more autosomal loci that ameliorate the bobbed phenotype of rDNA deficient males in Drosophila. In doing so we resolve several aspects of a long-standing paradox concerning the phenomenon of rDNA magnification. This problem arose from the use of two genetic assays, which were presumed to be identical, but paradoxically, produced conflicting data on both the kinetics of reversion and the stability of magnified bb+ chromosomes. We resolve this problem by demonstrating that in one assay bobbed-plus progeny arise primarily by genetic reversion at the bobbed locus, whereas in the other assay bobbed-plus progeny arise both by reversion and by an epistatic effect of autosomal modifiers on the bobbed phenotype. We further show that such modifiers can facilitate the appearance of phenotypically bobbed-plus progeny even under conditions where genetic reversion is blocked by magnification defective mutants. Finally, we present a speculative model relating the action of these modifiers to the large increases in rDNA content observed in males undergoing magnification.  相似文献   

17.
Sharyn A. Endow 《Genetics》1982,102(1):91-99
The question of whether the Ybb- chromosome contains ribosomal genes has been examined by using Southern blot analysis and comparing rDNA hybridization patterns for X/X and X/Ybb- DNA. The results demonstrate that the Ybb- chromosome contains sequences that hybridize to an rDNA probe under stringent conditions. Differential hybridization of some of these sequences with DNAs corresponding to different regions of a complete ribosomal gene repeat provides evidence that some of the genes on the Ybb- chromosome are type 2 repeats. Because data obtained by other workers suggest that type 2 repeats are transcribed only to low levels, these repeats may be classed as "nonfunctional". A further finding is that the ribosomal genes on the Ybb- chromosome do not undergo multiple rounds of DNA replication during polytenization of X/Ybb- cells.  相似文献   

18.
On the X chromosome of Drosophila melanogaster there is a single tandem array of 240 ribosomal RNA genes. The majority of these contain an insertion, known as type I, in the 28 S coding region. Previous genetic and electron microscopic studies indicated that genes bearing the type I insertion (ins+) are interspersed at random with those lacking it (ins?). In contrast, Renkawitz-Pohl et al. (1981) have analyzed the restriction pattern of X chromosomal ribosomal DNA in Drosophila hydei and demonstrated that in this case ins+ genes are segregated from ins?. This suggests either that the rDNA is organized differently in these two species or that the restriction enzyme technique reveals significant clustering not detected by previous methods. By using an appropriate restriction enzyme, we demonstrate that ins+ and ins? genes are intermingled at random in D. melanogaster. These experiments also indicate that genes containing the short form of the insertion are flanked by a larger spacer upstream than downstream.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号