首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with beta-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins.  相似文献   

2.

Background  

Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA). The SMN protein is known to play a role in RNA metabolism, neurite outgrowth, and cell survival. Yet, it remains unclear how SMN deficiency causes selective motor neuron death and muscle atrophy seen in SMA. Previously, we have shown that skin fibroblasts from SMA patients are more sensitive to the DNA topoisomerase I inhibitor camptothecin, supporting a role for SMN in cell survival. Here, we examine the potential mechanism of camptothecin sensitivity in SMA fibroblasts.  相似文献   

3.
4.
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling cascades. We report here that expression of constitutively active ASK1 (ASK1DeltaN) induces neurite outgrowth in the rat pheochromocytoma cell line PC12. We found that p38 and to a lesser extent JNK, but not ERK, were activated by the expression of ASK1DeltaN in PC12 cells. ASK1DeltaN-induced neurite outgrowth was strongly inhibited by treatment with the p38 inhibitor SB203580 but not with the MEK inhibitors, suggesting that activation of p38, rather than of ERK, is required for the neurite-inducing activity of ASK1 in PC12 cells. We also observed that ASK1DeltaN induced expression of several neuron-specific proteins and phosphorylation of neurofilament proteins, confirming that PC12 cells differentiated into mature neuronal cells by ASK1. Moreover, ASK1DeltaN-expressing PC12 cells survived in serum-starved condition. ASK1 thus appears to mediate signals leading to both differentiation and survival of PC12 cells. Together with previous reports indicating that ASK1 functions as a pro-apoptotic signaling intermediate, these results suggest that ASK1 has a broad range of biological activities depending on cell types and/or cellular context.  相似文献   

5.
Spinal muscular atrophy (SMA) is a genetic disorder characterized by degeneration of spinal cord motoneurons (MNs), resulting in muscular atrophy and weakness. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and decreased SMN protein. SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoproteins and pre-mRNA splicing requirements. SMN reduction causes neurite degeneration and cell death without classical apoptotic features, but the direct events leading to SMN degeneration in SMA are still unknown. Autophagy is a conserved lysosomal protein degradation pathway whose precise roles in neurodegenerative diseases remain largely unknown. In particular, it is unclear whether autophagosome accumulation is protective or destructive, but the accumulation of autophagosomes in the neuritic beadings observed in several neurite degeneration models suggests a close relationship between the autophagic process and neurite collapse. In the present work, we describe an increase in the levels of the autophagy markers including autophagosomes, Beclin1 and light chain (LC)3-II proteins in cultured mouse spinal cord MNs from two SMA cellular models, suggesting an upregulation of the autophagy process in Smn (murine survival motor neuron protein)-reduced MNs. Overexpression of Bcl-xL counteracts LC3-II increase, contributing to the hypothesis that the protective role of Bcl-xL observed in some SMA models may be mediated by its role in autophagy inhibition. Our in vitro experimental data indicate an upregulation in the autophagy process and autophagosome accumulation in the pathogenesis of SMA, thus providing a valuable clue in understanding the mechanisms of axonal degeneration and a possible therapeutic target in the treatment of SMA.  相似文献   

6.
The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis.  相似文献   

7.
8.
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is currently incurable. SMA is caused by decreased levels of the survival motor neuron protein (SMN), as a result of loss or mutation of SMN1. Although the SMN1 homolog SMN2 also produces some SMN protein, it does not fully compensate for the loss or dysfunction of SMN1. Salbutamol, a β2-adrenergic receptor agonist and well-known bronchodilator used in asthma patients, has recently been shown to ameliorate symptoms in SMA patients. However, the precise mechanism of salbutamol action is unclear. We treated SMA fibroblast cells lacking SMN1 and HeLa cells with salbutamol and analyzed SMN2 mRNA and SMN protein levels in SMA fibroblasts, and changes in SMN protein ubiquitination in HeLa cells. Salbutamol increased SMN protein levels in a dose-dependent manner in SMA fibroblast cells lacking SMN1, though no significant changes in SMN2 mRNA levels were observed. Notably, the salbutamol-induced increase in SMN was blocked by a protein kinase A (PKA) inhibitor and deubiquitinase inhibitor, respectively. Co-immunoprecipitation assay using HeLa cells showed that ubiquitinated SMN levels decreased in the presence of salbutamol, suggesting that salbutamol inhibited ubiquitination. The results of this study suggest that salbutamol may increase SMN protein levels in SMA by inhibiting ubiquitin-mediated SMN degradation via activating β2-adrenergic receptor-PKA pathways.  相似文献   

9.
Homozygous deletion or mutation in the survival motor neuron (SMN)1 gene causes proximal spinal muscular atrophy (SMA), whereas SMN2 acts as a modifying gene that can influence the severity of SMA. It has been suggested that restoration of the SMN protein level in neuronal cells may prevent cell loss and may be helpful for treatment of SMA. Recent studies indicate that the ubiquitin/proteasome pathway is a major system for proteolysis of intracellular proteins. In this study, we investigate whether SMN protein is degraded via the ubiquitin/proteasome pathway. Primary fibroblasts were established from the skin biopsies of SMA patients and the effect of a proteasome inhibitor MG132 and lysosome inhibitor NH(4)Cl on SMN protein level was examined. We found that MG132, but not NH(4)Cl, significantly increased the amount and nuclear accumulation of SMN protein in SMA patient's fibroblasts. Immunoprecipitation/western blot analysis indicated that SMN protein was ubiquitinated in cells. In vitro protein ubiquitination assay also demonstrated that SMN protein could be conjugated with ubiquitin. Taken together, we have provided clear evidences that degradation of SMN protein is mediated via the ubiquitin/proteasome pathway and suggest that proteasome inhibitors may up-regulate SMN protein level and may be useful for the treatment of SMA.  相似文献   

10.
The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.  相似文献   

11.
Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is a ubiquitously expressed house keeping protein that is involved in RNA production and processing. However, although SMN is expressed in every cell type, only the lower motor neurons of the spinal cord are degraded in SMA. It remains unclear why this is the case. Recently, SMN has been linked to the axonal transport of β-actin mRNA from the cell body down to the growth cones. β-Actin is transported actively in neurite granules (NGs). However, it remains unclear which known SMN-binding partners are present in these SMN-NGs. To address this we have analysed SMN-NGs in a human neuronal cell line, SH-SY5Y, using antibodies against the majority of reported SMN-binding partners, including: Gemin2, Gemin3, Gemin4, Gemin5, Gemin6, Gemin7, Sm core proteins, fibrillarin, EWS, PFNII, Unrip and ZPR1. The obtained results highlight the metamorphic nature of the SMN complex, suggesting that not all the “core” SMN-binding proteins are transported in SMN-NGs.  相似文献   

12.
Gemin5 is a 170-kDa WD-repeat-containing protein that was initially identified as a component of the survival of motor neurons (SMN) complex. We now show that Gemin5 facilitates the activation of apoptosis signal-regulating kinase 1 (ASK1) and downstream signaling. Gemin5 physically interacted with ASK1 as well as with the downstream kinases SEK1 and c-Jun NH(2)-terminal kinase (JNK1), and it potentiated the H(2)O(2)-induced activation of each of these kinases in intact cells. Moreover, Gemin5 promoted the binding of ASK1 to SEK1 and to JNK1, as well as the ASK1-induced activation of JNK1. In comparison, Gemin5 did not physically associate with MKK7, MKK3, MKK6, or p38. Furthermore, depletion of endogenous Gemin5 by RNA interference (RNAi) revealed that Gemin5 contributes to the activation of ASK1 and JNK1, and to apoptosis induced by H(2)O(2) and tumor necrosis factor-alpha (TNFalpha) in HeLa cells. Together, our results suggest that Gemin5 functions as a scaffold protein for the ASK1-JNK1 signaling module and thereby potentiates ASK1-mediated signaling events.  相似文献   

13.
Mutations in the SMN1 (survival motor neuron 1) gene cause spinal muscular atrophy (SMA). We now show that SMN protein, the SMN1 gene product, interacts directly with the tumor suppressor protein, p53. Pathogenic missense mutations in SMN reduce both self-association and p53 binding by SMN, and the extent of the reductions correlate with disease severity. The inactive, truncated form of SMN produced by the SMN2 gene in SMA patients fails to bind p53 efficiently. SMN and p53 co-localize in nuclear Cajal bodies, but p53 redistributes to the nucleolus in fibroblasts from SMA patients. These results suggest a functional interaction between SMN and p53, and the potential for apoptosis when this interaction is impaired may explain motor neuron death in SMA.  相似文献   

14.
15.
Spinal muscular atrophy (SMA) is caused by defects in the survival motor neuron 1 (SMN1) gene that encodes survival motor neuron (SMN) protein. The majority of therapeutic approaches currently in clinical development for SMA aim to increase SMN protein expression and there is a need for sensitive methods able to quantify increases in SMN protein levels in accessible tissues. We have developed a sensitive electrochemiluminescence (ECL)-based immunoassay for measuring SMN protein in whole blood with a minimum volume requirement of 5μL. The SMN-ECL immunoassay enables accurate measurement of SMN in whole blood and other tissues. Using the assay, we measured SMN protein in whole blood from SMA patients and healthy controls and found that SMN protein levels were associated with SMN2 copy number and were greater in SMA patients with 4 copies, relative to those with 2 and 3 copies. SMN protein levels did not vary significantly in healthy individuals over a four-week period and were not affected by circadian rhythms. Almost half of the SMN protein was found in platelets. We show that SMN protein levels in C/C-allele mice, which model a mild form of SMA, were high in neonatal stage, decreased in the first few weeks after birth, and then remained stable throughout the adult stage. Importantly, SMN protein levels in the CNS correlated with SMN levels measured in whole blood of the C/C-allele mice. These findings have implications for the measurement of SMN protein induction in whole blood in response to SMN-upregulating therapy.  相似文献   

16.
17.
The selective vulnerability of motor neurons to paucity of Survival Motor Neuron (SMN) protein is a defining feature of human spinal muscular atrophy (SMA) and indicative of a unique requirement for adequate levels of the protein in these cells. However, the relative contribution of SMN-depleted motor neurons to the disease process is uncertain and it is possible that their characteristic loss and the overall SMA phenotype is a consequence of low protein in multiple cell types including neighboring spinal neurons and non-neuronal tissue. To explore the tissue-specific requirements for SMN and, especially, the salutary effects of restoring normal levels of the protein to neuronal tissue of affected individuals, we have selectively expressed the protein in neurons of mice that model severe SMA. Expressing SMN pan-neuronally in mutant mice mitigated specific aspects of the disease phenotype. Motor performance of the mice improved and the loss of spinal motor neurons that characterizes the disease was arrested. Proprioceptive synapses on the motor neurons were restored and defects of the neuromuscular junctions mitigated. The improvements at the cellular level were reflected in a four-fold increase in survival. Nevertheless, mutants expressing neuronal SMN did not live beyond three weeks of birth, a relatively poor outcome compared to the effects of ubiquitously restoring SMN. This suggests that although neurons and, in particular, spinal motor neurons constitute critical cellular sites of action of the SMN protein, a truly effective treatment of severe SMA will require restoring the protein to multiple cell types including non-neuronal tissue.  相似文献   

18.
A paramount question in spinal muscular atrophy (SMA) research is why reduced levels of SMN, a ubiquitously expressed protein, leads to a motoneuron-specific disease. It has been hypothesized that SMN may have a dual function: a role in snRNP assembly and a novel function that affects axons. We have previously shown that decreasing Smn levels in zebrafish causes defects in motor axon outgrowth. To determine whether decreasing other components of the snRNP complex would also cause motor axon defects, we knocked down Gemin2, a SMN binding protein involved in snRNP assembly. Moderate knockdown of Gemin2 yields a large percentage of morphologically abnormal embryos with shortened trunks and overall delayed development. Examination of motor axons revealed that only embryos with abnormal body morphology had aberrant motor axons indicating that the motor axon defects are secondary to the overall body defects observed in these embryos. To directly test this, we knocked down Gemin2 specifically in motoneurons using two separate approaches and found that motor axons developed normally. Furthermore, wild-type neurons transplanted into morphologically abnormal gemin2 morphants had aberrant motor axons indicating that the motor axon defects observed when Gemin2 is decreased are secondary to the defects in body morphology. These data show that reduction of Gemin2, unlike reduction of SMN, in zebrafish embryos does not directly cause motor axon outgrowth defects. Since Gemin2 and SMN both function in snRNP biogenesis yet only SMN knockdown causes motor axon defects, these data are consistent with an additional role for SMN that is snRNP independent.  相似文献   

19.
Spinal muscular atrophy (SMA) is primarily a neurodegenerative disease caused by the homozygous deletion of the survival motor neuron 1 (SMN1) gene, thereby reducing SMN protein expression. Mesenchymal stem cells (MSCs) have been implicated in the treatment of SMA. In the present study, we overexpressed exogenous SMN1 at the ribosomal DNA (rDNA) locus of induced pluripotent stem cells (iPSCs) generated from a SMA patient using an rDNA-targeting vector. The gene-targeted patient iPSCs differentiated into MSCs (SMN1-MSCs). A 2.1-fold higher expression level of SMN protein was detected in SMN1-MSCs than that detected in MSCs derived from patient iPSCs, and the results of the immunofluorescence analysis showed no difference in the quantity of SMN nuclear structures (gems) between SMN1-MSCs and MSCs derived from normal human iPSCs (h-MSCs). These findings provide a novel strategy for obtaining gene-targeted MSCs for potential clinical applications in autologous cell-based therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号