首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   13篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1957年   1篇
排序方式: 共有140条查询结果,搜索用时 31 毫秒
1.
The aggregation and dispersity of isolated bovine adrenal secretory vesicles (chromaffin granules) were studied by intensity fluctuation spectroscopy. The degree of dispersity and the Z-average translational diffusion coefficients were calculated from the autocorrelation functions of the intensity fluctuations in lase light scattered from the granules in solution. Granules purified by sedimentation through 0.3 M sucrose/Ficoll/2H2O showed greater dispersity than granules purified by sedimentation through 1.6 M sucrose. By monitoring the scattered light intensity and the diffusion coefficients of the granules, many of the difficulties encountered in the interpretation of absorbance measurements were avoided. Measurements over a range of granule concentrations in sucrose solutions (10 mM HEPES, pH 7.0), indicated that aggregation of the granules occurred at concentrations above 150 μg protein/ml. At low granule concentrations (15–30 μg protein/ml) Ca2+-induced aggregation was detected at a threshold of 2–10 mM calcium.  相似文献   
2.
The ionic events underlying gamma-aminobutyric acid (GABA) receptor activation on the cell body of a cockroach identified motor neuron were investigated by using current-clamp and voltage-clamp techniques. The reversal potential for GABA-induced hyperpolarization was -77.0 +/- 2.4 mV (mean +/- s.e.m.; n = 22). The reversal potential for GABA was highly sensitive to changes in external chloride, only weakly affected by changes in external potassium, and independent of changes in either sodium or calcium ion concentration. Intracellular ion-sensitive microelectrodes confirmed that an influx of chloride ions mediated the GABA response. Intracellular injection of acetate, citrate, sulphate, fluoride or ammonium caused no change in the reversal potential for GABA. Intracellular injection of chloride, bromide, chlorate, bromate, or methyl sulphate shifted the reversal potential for GABA to values more positive than resting membrane potential. Evidence for chloride accumulating and for extrusion mechanisms was examined by using putative inhibitors. However, internal application of ammonium ions, and external application of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), acetazolamide, furosemide, ammonium, zinc and copper ions, were all without effect on the reversal potential for GABA.  相似文献   
3.
4.
An apparatus is described by means of which the power versus frequency spectrum of the photomultiplier current can be obtained for laser light scattered by streaming cytoplasm in the algal cell Chara corallina. A Doppler peak is noted in the spectrum which is abolished when cytoplasmic streaming is arrested by electrical stimulation. For 5 cells of Chara, this simple laser-Doppler velocimeter gave streaming velocities (46-7 mum s-1, S.D. +/- 4-8 at 20 degrees C) similar to those obtained for the same cells using the light microscope (44-3 mum s-1, S.D. +/- 5-3 at 20 degrees C). A narrow distribution of streaming velocities is indicated. The technique described provides a rapid, quantitative assay of the in vivo rheological properties of cytoplasm.  相似文献   
5.
The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these “Orphan” subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes.  相似文献   
6.
The nematode Caenorhabditis elegans is an established model organism for studying neurobiology. UNC-63 is a C. elegans nicotinic acetylcholine receptor (nAChR) α-subunit. It is an essential component of the levamisole-sensitive muscle nAChR (L-nAChR) and therefore plays an important role in cholinergic transmission at the nematode neuromuscular junction. Here, we show that worms with the unc-63(x26) allele, with its αC151Y mutation disrupting the Cys-loop, have deficient muscle function reflected by impaired swimming (thrashing). Single-channel recordings from cultured muscle cells from the mutant strain showed a 100-fold reduced frequency of opening events and shorter channel openings of L-nAChRs compared with those of wild-type worms. Anti-UNC-63 antibody staining in both cultured adult muscle and embryonic cells showed that L-nAChRs were expressed at similar levels in the mutant and wild-type cells, suggesting that the functional changes in the receptor, rather than changes in expression, are the predominant effect of the mutation. The kinetic changes mimic those reported in patients with fast-channel congenital myasthenic syndromes. We show that pyridostigmine bromide and 3,4-diaminopyridine, which are drugs used to treat fast-channel congenital myasthenic syndromes, partially rescued the motility defect seen in unc-63(x26). The C. elegans unc-63(x26) mutant may therefore offer a useful model to assist in the development of therapies for syndromes produced by altered function of human nAChRs.  相似文献   
7.
Sattelle BM  Almond A 《Glycobiology》2011,21(12):1651-1662
Understanding microsecond-timescale dynamics is crucial to establish three-dimensional (3D) structure-activity relationships in sugars but has been intractable to experiments and simulations. As a consequence, whether arguably the most important chemical scaffold in glycobiology, N-acetyl-d-glucosamine (GlcNAc), deviates from a rigid (4)C(1) chair is unknown. Here, conformer populations and exchange kinetics were quantified from the longest aqueous carbohydrate simulations to date (0.2 ms total) of GlcNAc, four derivatives from heparan sulfate and their methylglycosides. Unmodified GlcNAc took 3-5 μs to reach a conformational equilibrium, which comprised a metastable (4)C(1) chair that underwent (4)C(1) ? (1)C(4) transitions at a predicted forward rate of 0.8 μs(-1) with an average (1)C(4)-chair lifetime of 3 ns. These predictions agree with high-resolution crystallography and nuclear magnetic resonance but not with the hypothesis that GlcNAc is a rigid (4)C(1) chair, concluded from previous experimental analyses and non-aqueous modeling. The methylglycoside was calculated to have a slower forward rate (0.3 μs(-1)) and a more stable (4)C(1) conformer (0.2 kcal mol(-1)), suggesting that pivotal 3D intermediates (particularly (2)S(O), (1)S(5) and B(2,5)) increased in energy, and water was implicated as a major cause. Sulfonation (N-, 3-O and 6-O) significantly augmented this effect by blocking pseudorotation, but did not alter the rotational preferences of hydroyxl or hydroxymethyl groups. We therefore propose that GlcNAc undergoes puckering exchange that is dependent on polymerization and sulfo substituents. Our analyses, and 3D model of the equilibrium GlcNAc conformer in water, can be used as dictionary data and present new opportunities to rationally modify puckering and carbohydrate bioactivity, with diverse applications from improving crop yields to disease amelioration.  相似文献   
8.
A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca2+]i) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca2+]i transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx.  相似文献   
9.
Neonicotinoid insecticides, which act selectively on insect nicotinic acetylcholine receptors (nAChRs), are used worldwide for insect pest management. Studies that span chemistry, biochemistry, molecular biology, and electrophysiology have contributed to our current understanding of the important physicochemical and structural properties essential for neonicotinoid actions as well as key receptor residues contributing to the high affinity of neonicotinoids for insect nAChRs. Research to date suggests that electrostatic interactions and possibly hydrogen bond formation between neonicotinoids and nAChRs contribute to the selectivity of these chemicals. A rich diversity of neonicotinoid-nAChR interactions has been demonstrated using voltage-clamp electrophysiology. Computational modeling of nAChR-imidacloprid interaction has assisted in the interpretation of these results.  相似文献   
10.
The reactions of several active site mutant forms of bacterial morphinone reductase (MR) with NADH and 2-cyclohexen-1-one as substrates have been studied by stopped-flow and steady-state kinetic methods and redox potentiometry. The enzymes were designed to (i) probe a role for potential proton donors (Tyr-72 and Tyr-356) in the oxidative half-reaction of MR; (ii) assess the function of a highly conserved tryptophan residue (Trp-106) in catalysis; (iii) investigate the role of Thr-32 in modulating the FMN reduction potential and catalysis. The Y72F and Y356F enzymes retained activity in both steady-state and stopped-flow kinetic studies, indicating they do not serve as key proton donors in the oxidative reaction of MR. Taken together with our recently published data (Messiha, H. L., Munro, A. W., Bruce, N. C., Barsukov, I., and Scrutton, N. S. (2005) J. Biol. Chem. 280, 4627-4631) that rule out roles for Cys-191 (corresponding with the proton donor, Tyr-196, in the structurally related OYE1 enzyme) and His-186 as proton donors, we infer solvent is the source of the proton in the oxidative half-reaction of MR. We demonstrate a key role for Thr-32 in modulating the reduction potential of the FMN, which is decreased approximately 50 mV in the T32A mutant MR. This effects a change in rate-limiting step in the catalytic cycle of the T32A enzyme with the oxidizing substrate 2-cyclohexenone. Despite the conservation of Trp-106 throughout the OYE family, we show this residue does not play a major role in catalysis, although affects on substrate and coenzyme binding are observed in a W106F enzyme. Our studies show some similarities, but also major differences, in the catalytic mechanism of MR and OYE1, and emphasize the need for caution in inferring mechanism by structural comparison of highly related enzymes in the absence of solution studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号