首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
通过研究神经节苷脂GM3对国人单核样白血病细胞系J6-2细胞蛋白质磷酸化的影响,在[γ- 32P]ATP,GM3,ATP,Mg2+与J6-2细胞液及颗粒两部分共同反应,10min(30℃)体系中,观察到GM3对两部分蛋白质磷酸化的调节作用.GM3(100μmol/L)促进颗粒部分分子量为180 000,87 000,78 000,67 000,43 000及31 000的蛋白质磷酸化,促进胞液部分分子量为87 000及56 000的蛋白质磷酸化,而且能抑制70 000及43 000蛋白质磷酸化.由于GM3已被前人证实能对J6-2细胞起分化作用,其作用时间长达4-6d,很可能GM3对蛋白质磷酸化作用的调节是GM3促分化作用的早期信号.  相似文献   

2.
有机锗(CGS、DGS、Ge-132)于活体内能激活小鼠腹腔巨噬细胞(Mφ),后者于体外对肿瘤细胞Hca-16H3和J6-2表达Mφ介导的肿瘤细胞毒(MTC),CGS与DGS的激活效应高于Ge-132,CGS为最强.它们激活的Mφ磷脂PC代谢转换较常驻Mφ(R-Mφ)明显增高,表现在[3H]胆碱掺入PC增加,CGS的增加效应最强.Ge-132激活的Mφ(Ge-12-Mφ)与R-Mφ比较,增加[32P]Pi掺入PC,降低[32P]Pi或[3H]肌醇掺入PI,但[32P]Pi或[3H]肌醇掺入PIP、PIP2未有显著差异.PC代谢转换的增加很可能是有机锗激活Mφ表达MTC的信息传递所需要的.  相似文献   

3.
GM3在几种哺乳动物肝脏和狗红细胞中的含量及其分离纯化   总被引:6,自引:2,他引:4  
从正常兔、猪和狗的肝脏及狗红细胞中分离纯化了总神经节苷脂,测定了脂结合唾液酸,进行了高效薄层层析,比较了上述四种组织中GM3的含量。结果表明狗红细胞中的GM3的含量较另三种的高,狗肝和兔肝次之,猪肝含量甚微。从狗红细胞中提取和纯化了GM3,其得量为每毫升压积红细胞351.0μg,纯度为92.2%。  相似文献   

4.
用50μmol/L GM_3处理J6-2细胞6天,经组化与细胞学检查,证实细胞沿单核巨噬细胞途径分化。以[~(32)P]Pi或[CH_3-~(14)C]胆碱冲激(Pulse)后,将洗净的细胞进行Folch分配。取下相进行薄层层析,再做放射自显影。结果表明:GM_3的处理能促进[~(32)P]Pi或[CH_3-~(14)C]胆碱向磷脂酰胆碱的参入,而抑制向其他磷脂组分的参入。用[CH_3-~(14)C]胆碱冲激的Folch分配上相含水溶性胆碱代谢物,经TLC,结果表明CM_3的处理使[CH_3-~(14)C]胆碱向CDP-胆碱的参入减少。本研究证实,GM_3能调节J6-2细胞的磷脂代谢,其调节机制值得研究。  相似文献   

5.
蛋白激酶C研究的最新进展   总被引:9,自引:1,他引:8  
作为能使蛋白激酶C(PKC)活化的第二信使甘油二酯(DAG)不仅可由磷脂酰肌醇(PtdIns)水解产生,大量实验表明还可从磷脂酰胆碱(PC)水解而来,其中磷脂酶C(PLC)及磷脂酶D(PLD)参与了这一过程,磷脂酶A2(PLA2)的作用产物脂肪酸(FA)也能激活PKC.PKC至少有10种亚型,依据其活化方式可分三大类:典型PKC,新PKC和非典型PKC.PKC参与了基因表达的调控.  相似文献   

6.
Mg2+对阿霉素引起心肌线粒体F1F0变化的保护   总被引:4,自引:0,他引:4  
抗肿瘤药物阿霉素(ADM)对心肌线粒体F1F0-复合体呈现抑制而对F1-ATPase无抑制,这表明ADM可能是通过膜脂起作用的,适当浓度Mg2+能降低ADM对复合体的抑制.经 31P-NMR和标记荧光探针NBD-PE,DPH,MC-540以及内源荧光等的测定,结果表明ADM可能首先通过诱导F1F0膜脂形成非双层脂结构,继而影响了膜脂的堆积程度和流动性,进而引起F1F0-复合体酶蛋白构象的改变,最终导致酶活力的降低.Mg2+则可能由于与ADM竞争与心磷脂的结合,而对ADM引起F1F0的变化产生保护作用.  相似文献   

7.
探讨弱氧化修饰低密度脂蛋白(MM-LDL)能否诱导人脐静脉内皮细胞(HUVECs)凋亡以及胞浆型磷脂酶A2(cPLA2)在此过程中的作用.MTT法测定细胞存活率;相差显微镜、荧光显微镜和流式细胞仪检测细胞凋亡;3H-花生四烯酸(3H-AA)预标法测定PLA2活性;蛋白质印迹检测cPLA2磷酸化;激光共聚焦显微镜检测单个细胞内钙离子浓度的变化.结果表明,MM-LDL(100~300 mg/L)作用后的HUVECs呈现凋亡典型的形态特征,凋亡率随MM-LDL浓度的增加而上升.MM-LDL能引起胞内钙离子浓度增加,cPLA2的活化及磷酸化.15 μmol/L AACOCF3和5 mmol/L EGTA在抑制cPLA2活性的同时,部分抑制MM-LDL诱导的HUVECs凋亡.加入外源性AA(50 μmol/L)能逆转AACOCF3引起的凋亡抑制.结果提示,cPLA2参与了MM-LDL诱导HUVECs凋亡的信号传递.  相似文献   

8.
该实验以烟草悬浮细胞 BY 2 为材料,在烟草悬浮细胞中分别加入0.05、0.10、0.15、0.20 mmol·L-1AlCl3,以等体积去离子水处理的悬浮细胞液为对照,并依据前述实验结果选择0.15 mmol·L-1 AlCl3,分别添加5 mmol·L-1 DMTU(H2O2 抑制剂)、20 μmol·L-1CaCl2、15 μmol·L-1 LaCl3(Ca2+通道抑制剂)和50 μmol·L-1 ATP设计多项处理,分析胞外ATP(eATP)对铝离子(Al3+)胁迫引起的植物细胞死亡及其胞内H2O2、Ca2+的影响,以揭示Al3+胁迫下植物调节细胞死亡的可能机制,进一步扩展对eATP功能的认知。结果显示:(1)随着 AlCl3 胁迫浓度的提高,细胞死亡水平和胞内H2O2水平上升,而胞内Ca2+和eATP水平则逐渐降低。(2)外援施加H2O2抑制剂 DMTU(二甲基硫脲)和Ca2+能够有效缓解AlCl3诱导的细胞死亡水平的上升;而Ca2+通道抑制剂LaCl3(三氯化镧)则加剧了AlCl3胁迫下的细胞死亡。(3)在AlCl3胁迫下对细胞添加外源ATP,能够缓解AlCl3胁迫下胞内H2O2水平上升和Ca2+水平下降的同时,并显著降低AlCl3胁迫导致的细胞死亡。研究表明, Al3+以剂量依赖的模式提升细胞死亡和细胞内H2O2的水平并降低胞内Ca2+和eATP水平,AlCl3诱导的细胞死亡受到H2O2和Ca2+水平变化的调节,eATP可以通过调节H2O2与Ca2+水平缓解AlCl3诱导的细胞死亡。推测Al3+胁迫可能通过抑制钙离子通道而破坏了细胞内H2O2和Ca2+之间的协同关系,外源ATP对Al3+诱导H2O2上升的缓解作用可能是由于其提升了细胞的抗氧化能力。  相似文献   

9.
信息跨膜传递的分子机制   总被引:2,自引:0,他引:2  
胞外信息作用于质膜表面的受体,转变为胞内信使分子完成信息的跨膜传递。β受体结合配体后活化G蛋白(通过α亚基与β、γ的解离)影响环化酶的活性。而钙联受体则通过触发肌醇磷脂的代谢,生成胞内信使甘油二酯(DG)和三磷酸肌醇酯(IP3),胞内游离Ca2+浓度瞬间增高(Ca2+动员过程),通过不同的蛋白激酶引起特定的生理效应。DG活化蛋白激酶-C,IP3动员胞内Ca2+,它们通过二个相互独立而协同的过程调节细胞的代谢。  相似文献   

10.
胰岛素和胰岛素突变体促进大鼠脂肪细胞摄取葡萄糖   总被引:1,自引:0,他引:1  
报道了大鼠脂肪细胞摄取葡萄糖测定胰岛素体外活性的简便方法 .在胰岛素存在下 ,脂肪细胞摄取葡萄糖的量比对照增加 5~ 6倍 .当胰岛素浓度在 0 .2~ 1 0μg/L时 ,脂肪细胞摄取D [3 3H] 葡萄糖的量与胰岛素浓度对数呈线性关系 .葡萄糖和 3 O 甲基葡萄糖抑制指脂肪细胞摄取D [3 3H]葡萄糖 .利用这一方法测定了[B2 Lys] 胰岛素和 [B3 Lys] 胰岛素的体外活力 ,分别为胰岛素的 6 1.6 %和 154% .  相似文献   

11.
ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ε subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH -0.3 to 2.2, Δψ -30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.  相似文献   

12.

Background

Rumex species are traditionally used for the treatment of neurological disorders including headache, migraine, depression, paralysis etc. Several species have been scientifically validated for antioxidant and anticholinestrase potentials. This study aims to investigate Rumex hastatus D. Don crude methanolic extract, subsequent fractions, saponins and flavonoids for acetylcholinestrase, butyrylcholinestrase inhibition and diverse antioxidant activities to validate its folkloric uses in neurological disorders. Rumex hastatus crude methanolic extract (Rh. Cr), subsequent fractions; n-hexane (Rh. Hex), chloroform (Rh. Chf), ethyl acetate (Rh. EtAc), aqueous fraction (Rh. Aq), crude saponins (Rh. Sp) and flavonoids (Rh. Fl) were investigated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at various concentrations (125, 250, 500, 1000 μg/mL) using Ellman’s spectrophotometric analysis. Antioxidant potentials of Rh. Sp and Rh. Fl were evaluated using DPPH, H2O2 and ABTS free radical scavenging assays at 62.5, 125, 250, 500, 1000 μg/mL.

Results

All the test samples showed concentration dependent cholinesterase inhibition and radicals scavenging activity. The AChE inhibition potential of Rh. Sp and Rh. Fl were most prominent i.e., 81.67 ± 0.88 and 91.62 ± 1.67 at highest concentration with IC50 135 and 20 μg/mL respectively. All the subsequent fractions exhibited moderate to high AChE inhibition i.e., Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq showed IC50 218, 1420, 75, 115 and 1210 μg/mL respectively. Similarly, against BChE various plant extracts i.e., Rh. Sp, Rh. Fl, Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq resulted IC50 165, 175, 265, 890, 92, 115 and 220 μg/mL respectively. In DPPH free radical scavenging assay, Rh. Sp and Rh. Fl showed comparable results with the positive control i.e., 63.34 ± 0.98 and 76.93 ± 1.13% scavenging at 1 mg/mL concentration (IC50 312 and 104 μg/mL) respectively. The percent ABTS radical scavenging potential exhibited by Rh. Sp and Rh. Fl (1000 μg/mL) were 82.58 ± 0.52 and 88.25 ± 0.67 with IC50 18 and 9 μg/mL respectively. Similarly in H2O2 scavenging assay, the Rh. Sp and Rh. Fl exhibited IC50 175 and 275 μg/mL respectively.

Conclusion

The strong anticholinesterase and antioxidant activities of Rh. Sp, Rh. Fl and various fractions of R. hastatus support the purported ethnomedicinal uses and recommend R. hastatus as a possible remedy for the treatment of AD and neurodegenerative disorders.  相似文献   

13.
Soil from a pulse cultivated farmers land of Odisha, India, have been subjected to incubation studies for 40 consecutive days, to establish the impact of various nitrogenous fertilizers and water filled pore space (WFPS) on green house gas emission (N2O & CH4). C2H2 inhibition technique was followed to have a comprehensive understanding about the individual contribution of nitrifiers and denitrifiers towards the emission of N2O. Nevertheless, low concentration of C2H2 (5 ml: flow rate 0.1 kg/cm2) is hypothesized to partially impede the metabolic pathways of denitrifying bacterial population, thus reducing the overall N2O emission rate. Different soil parameters of the experimental soil such as moisture, total organic carbon, ammonium content and nitrate–nitrogen contents were measured at regular intervals. Application of external N-sources under different WFPS conditions revealed the diverse role played by the indigenous soil microorganism towards green house gas emission. Isolation of heterotrophic microorganisms (Pseudomonas) from the soil samples, further supported the fact that denitrification might be prevailing during specific conditions thus contributing to N2O emission. Statistical analysis showed that WFPS was the most influential parameter affecting N2O formation in soil in absence of an inhibitor like C2H2.  相似文献   

14.
The effectiveness of the metal oxide nanoparticles viz. CuO and Fe2O3 as antibacterial agents against multidrug resistant biofilm forming bacteria was evaluated. CuO nanoparticles were also experimented for antibiofilm and time kill assay. The CuO displayed maximum antibacterial activity with zone of inhibition of (22 ± 1) mm against methicillin resistant Staphylococcus aureus (MRSA) followed by Escherichia coli (18 ± 1) mm. The Fe2O3 showed the zone of inhibition against MRSA of (14 ± 1) mm followed by E. coli (12 ± 1) mm. CuO proved to be more toxic than Fe2O3 nanoparticles showing significantly high antibacterial activity and found to possess dose dependent antibiofilm properties.  相似文献   

15.
In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca2+-independent phospholipase A2 (iPLA2), Ca2+-independent plasmalogen PLA2 or secretory PLA2 (sPLA2), but not by Ca2+-dependent cytosolic PLA2 (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca2+ into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca2+-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.p. to unanesthetized rats. Radiolabeled DHA or AA was infused intravenously and their brain incorporation coefficients k*, measures of signaling, were imaged with quantitative autoradiography. NMDA or MK-801 compared with saline did not alter k* for DHA in any of 81 brain regions examined, whereas NMDA produced widespread and significant increments in k* for AA. In conclusion, in vivo brain DHA but not AA signaling via NMDA receptors is independent of extracellular Ca2+ and of cPLA2. DHA signaling may be mediated by iPLA2, plasmalogen PLA2, or other enzymes insensitive to low concentrations of Ca2+. Greater AA than DHA release during glutamate-induced excitotoxicity could cause brain cell damage.  相似文献   

16.
Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A2A and A3 receptor expression was observed in the arterial wall and A2A-immunoreactivity was identified in the adventitia–media junction and endothelium. A1 and A2B receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A2A antagonist, reduced NECA relaxations that were not modified by A1, A2B, and A3 receptor antagonists. Neuronal voltage-gated Ca2+ channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IKCa)- and small (SKCa)-conductance Ca2+-activated K+ channels. Inhibition of cyclooxygenase (COX), large-conductance Ca2+-activated-, ATP-dependent-, and voltage-gated-K+ channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A2A purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IKCa and SKCa channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.  相似文献   

17.
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 μm at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 μm ATP (⪡Km), the distribution of the durations of the ATP-waiting pause fit well with a single-exponential decay function. The second-order binding rate constant for ATP was 2.3 × 106 m−1 s−1. At 40 mm ATP (⪢Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.  相似文献   

18.
线粒体F1Fo复合体Fo部分a亚基的色氨酸荧光可被竹红菌乙素(hypocrellin B, HB)猝灭.不同温度下测定Stern-Volmer图的结果显示,猝灭常数(Ksv)随温度的增加而加大,时间衰变荧光的结果显示,荧光寿命随HB浓度的增加而减小,加入不同浓度的HB, F1Fo复合体的吸收峰没有位移.这些实验结果支持动态猝灭机理.HB还具有有效猝灭浓度低,不影响酶的活力;在脂相和水相的分布比率可高达16 560∶1;实验操作简便等优点.因此HB可作为理想的疏水相荧光猝灭剂,研究与膜结合的F1Fo复合体中镶嵌于膜脂内Fo的构象变化.  相似文献   

19.
C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.  相似文献   

20.
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号