首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
稻麦轮作系统冬小麦农田耕作措施对氧化亚氮排放的影响   总被引:2,自引:0,他引:2  
郑建初  张岳芳  陈留根  王子臣 《生态学报》2012,32(19):6138-6146
2008—2011年,采用静态箱-气相色谱法对长江下游稻麦轮作系统冬小麦农田N2O排放进行了为期3a的田间原位观测,研究不同耕作措施(免耕、旋耕和翻耕)对冬小麦生长季N2O排放的影响。结果表明:不同耕作措施下冬小麦农田N2O排放高峰出现在施用基肥后的1个月内以及施用孕穗肥后的4月中旬至小麦成熟期,其余时间N2O排放通量均较小。年度和耕作措施对冬小麦农田N2O季节排放总量均有极显著影响(P<0.01),不同处理N2O季节排放总量表现为免耕>翻耕>旋耕,2008—2011年3年平均分别为2.50 kg/hm2、2.05 kg/hm2和1.66 kg/hm2,免耕比翻耕增加N2O排放22.0%(P<0.05),旋耕比翻耕减排19.0%(P<0.05)。冬小麦生长期内施用孕穗肥后1个月内N2O排放通量与农田土壤充水孔隙率(WFPS)及10 cm地温呈显著(P<0.05)或极显著(P<0.01)正相关,2009—2010年施用基肥后1个月内N2O排放通量与WFPS呈显著负相关(P<0.05)。结果说明旋耕是减少长江下游稻麦轮作系统冬小麦农田N2O排放的最佳耕作措施。  相似文献   

2.
The loss of nitrogen (N) from field-applied animal manure through ammonia (NH3) volatilisation and nitrous oxide (N2O) emission is of major environmental concern. Both lime and dicyandiamide (DCD) have been suggested as amendments that can mitigate N2O emissions, but simultaneously increase the risk of NH3 volatilisation. This study evaluated the impact of lime and DCD on NH3 and N2O emissions following application of liquid hog manure. Hydrated lime (Ca(OH)2) was added to an acidic soil to achieve three pH levels (4.7, 6.3 and 7.4). Soil samples (100 g) were then placed in 500 ml screw-top Mason-jars and de-ionised water was added to bring the samples to 50, 70 and 90% water-filled pore space (WFPS). Slurry was applied at a rate equivalent to 116,000 l ha−1, while DCD was applied at 30% of the NH4-N rate applied. Jars were sealed and incubated at 21°C for 21 d. Ammonia volatilisation was quantified using boric acid traps, while N2O gas concentration was analysed using gas chromatography. Dicyandiamide had no effect (P>0.05) on either NH3 or N2O emissions. Both NH3 and N2O emissions increased (P<0.05) as WFPS increased, with emissions ranging from 0.9 to 1.4 kg NH3-N ha−1 and 123 to 353 g N2O-N ha−1, respectively. Liming decreased (P<0.01) N2O emissions from 547 to 46 g N2O-N ha−1, but increased (p<0.01) NH3 volatilisation from 0.36 to 1.92 kg NH3-N ha−1. Results suggest that liming to a pH ≥6.3 can reduce N2O emissions, however, this reduction will be accompanied by a substantial loss of NH3. Section Editor: H. Lambers  相似文献   

3.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

4.
Restored forested wetlands reduce N loads in surface discharge through plant uptake and denitrification. While removal of reactive N reduces impact on receiving waters, it is unclear whether enhanced denitrification also enhances emissions of the greenhouse gas N2O, thus compromising the water-quality benefits of restoration. This study compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a mature bottomland forest to those from an adjacent cultivated site in the Lower Mississippi Alluvial Valley. Potential denitrification of forested soil was 2.4 times of cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 and 2.0 times those of cultivated soil at 70, 85 and 100% water-filled pore space (WFPS), respectively. When NO3 was added, N2O emissions from forested soil were 2.2 times those of cultivated soil at 70% WFPS. At 85 and 100% WFPS, N2O emissions were not significantly different despite much greater denitrification rates in the forested soil because N2O:N2 emission ratios declined more rapidly in forested soil as WFPS increased. These findings suggest that restoration of forested wetlands to reduce NO3 in surface discharge will not contribute significantly to the atmospheric burden of N2O.  相似文献   

5.
水肥一体化条件下设施菜地的N2O排放   总被引:5,自引:0,他引:5  
王艳丽  李虎  孙媛  王立刚 《生态学报》2016,36(7):2005-2014
在保证作物产量的前提下,研究减少农田土壤N_2O排放的水肥统筹管理措施对全球温室气体减排具有重要意义。以京郊典型设施菜地为例,设置了农民习惯(FP)、水肥一体化(FPD)、优化水肥一体化(OPTD)和对照(CK)4个处理,采用静态箱-气相色谱法,对果菜-叶菜(黄瓜-芹菜)轮作周期内土壤N_2O排放进行了观测,并分析了氮肥施用量、灌溉方式、土壤温度和湿度等因素对土壤N_2O排放的影响。结果表明:在黄瓜-芹菜种植模式中,各施氮处理除基肥施用后N_2O排放峰持续10—15d外,一般施肥、施肥+灌溉事件后土壤N_2O排放峰均呈现3—5d短而急促的情形。黄瓜生长季N_2O排放通量与土壤湿度(WFPS)之间呈现显著相关的关系;芹菜生长季N_2O排放通量与土壤温度之间呈现显著相关的关系。观测期内FP处理N_2O排放量为(31.00±2.15)kg N/hm~2,FPD处理与之相比N_2O排放量减少了4.2%,而OPTD处理在减少40%化肥氮量的情况下,N_2O累积排放量比FP处理减少了42.7%,且达到显著水平。说明在水肥一体化条件下,合理改变施肥体系是减少N_2O排放的前提,在此基础上进行水肥优化是设施菜地保持产量、减少N_2O排放的重要技术措施。  相似文献   

6.
Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell−1 h−1 and nitrification rates of 2.6±0.5 fmol NO2 cell−1 h−1 were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In 15N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.  相似文献   

7.
Summary Soil cores incubated under air atmosphere with C2H2 at partial pressure of 0.1 kPa, reduced NO3 to N2O. Glucose and nitrate at higher concentration stimulated the N2O production. Further reduction of N2O to N2 seemed to be temporarely inhibited. However after 12 h N2O concentrations decreased, irrespective of soil treatment.  相似文献   

8.
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.  相似文献   

9.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

10.
Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm3 lumps to the soil in combination with no or 200 g NO3 --N g-1. At four occasions over a two-week study period, subsets of cores were measured for N2O production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air.Autoclaved yeast provided a C-source readily available for denitrifying bacteria in the soil. Nitrous oxide production was negligible in unamended columns whereas accumulated N2O losses in the presence of yeast material were substantial, varying between 15 to 49 ng N2O-N g-1 h-1. Mixing yeast into the soil caused the highest production of N2O followed by the yeast lump and no yeast treatments. Incubation in the presence of 10 Pa C2H2 indicated that denitrification was the sole source of N2O, in accordance with an increase in DEA. Nitrous oxide production and DEA peaked after 4–7 days of incubation, and both were unaffected by additional NO3 -. Two-to four-fold responses to anaerobiosis and accumulation of NO3 - and NH4 + in proximity of the lumps indicated that N2O production here was limited by relatively low C-availability. In contrast, 10- to 12-fold responses to anaerobiosis and no accumulation of inorganic N suggested a higher C-availability where yeast was mixed into the soil.  相似文献   

11.
Emissions of nitrous oxide (N2O) from the soil following simulated nitrogen (N) deposition in a disturbed (pine), a rehabilitated (pine and broadleaf mixed) and a mature (monsoon evergreen broadleaf) tropical forest in southern China were studied. The following hypotheses were tested: (1) addition of N will increase soil N2O emission in tropical forests; and (2) any observed increase will be more pronounced in the mature forest than in the disturbed or rehabilitated forest due to the relatively high initial soil N concentration in the mature forest. The experiment was designed with four N treatment levels (three replicates; 0, 50, 100, 150 kg N ha−1 year−1 for C (Control), LN (Low-N), MN (Medium-N), and HN (High-N) treatment, respectively) in the mature forest, but only three levels in the disturbed and rehabilitated forests (C, LN and MN). Between October 2005 to September 2006, soil N2O flux was measured using static chamber and gas chromatography methodology. Nitrogen had been applied previously to the plots since July 2003 and continued during soil N2O flux measurement period. The annual mean rates of soil N2O emission in the C plots were 24.1 ± 1.5, 26.2 ± 1.4, and 29.3 ± 1.6 μg N2O–N m−2 h−1 in the disturbed, rehabilitated and mature forest, respectively. There was a significant increase in soil N2O emission following N additions in the mature forest (38%, 41%, and 58% when compared to the C plots for the LN, MN, and HN plots, respectively). In the disturbed forest a significant increase (35%) was observed in the MN plots, but not in the LN plots. The rehabilitated forest showed no significant response to N additions. Increases in soil N2O emission occurred primarily in the cool-dry season (November, December and January). Our results suggest that the response of soil N2O emission to N deposition in tropical forests in southern China may vary depending on the soil N status and land-use history of the forest.  相似文献   

12.
等氮滴灌对宿根蔗产量及土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
为得到合理的水肥管理措施,研究等氮量下不同滴灌施肥比例对宿根蔗产量以及不同生育期蔗田土壤氧化亚氮(N2 O)通量和无机氮含量的影响,并分析蔗田土壤N2 O通量与无机氮含量之间的关系.该文以自然降雨W0为对照,设置2种滴灌灌水量水平W1(田间持水量的75%)和W2(田间持水量的85%),等量氮肥(N 300 kg·hm-...  相似文献   

13.
Rates and pathways of nitrous oxide production in a shortgrass steppe   总被引:5,自引:2,他引:3  
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y from all shortgrass steppe (25 × 106 ha).  相似文献   

14.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   

15.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

16.
Estavillo  JM  Merino  P  Pinto  M  Yamulki  S  Gebauer  G  Sapek  A  Corré  W 《Plant and Soil》2002,239(2):253-265
Soils are an important source of N2O, which can be produced both in the nitrification and the denitrification processes. Grassland soils in particular have a high potential for mineralization and subsequent nitrification and denitrification. When ploughing long term grassland soils, the resulting high supply of mineral N may provide a high potential for N2O losses. In this work, the short-term effect of ploughing a permanent grassland soil on gaseous N production was studied at different soil depths. Fertiliser and irrigation were applied in order to observe the effect of ploughing under a range of conditions. The relative proportions of N2O produced from nitrification and denitrification and the proportion of N2 gas produced from denitrification were determined using the methyl fluoride and acetylene specific inhibitors. Irrespectively to ploughing, fertiliser application increased the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). Application of fertiliser also increased the denitrification N2O/N2 ratio both in the denitrification potential and in the gaseous N productions by denitrification. Ploughing promoted soil organic N mineralization which led to an increase in the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). In both the ploughed and unploughed treatments the 0–10 cm soil layer was the major contributing layer to gaseous N production by all the above processes. However, the contribution of this layer decreased by ploughing, gaseous N productions from the 10 to 30 cm layer being significantly increased with respect to the unploughed treatment. Ploughing promoted both nitrification and denitrification derived N2O production, although a higher proportion of N2O lost by denitrification was observed as WFPS increased. Recently ploughed plots showed lower denitrification derived N2O percentages than those ploughed before as a result of the lower soil water content in the former plots. Similarly, a lower mean nitrification derived N2O percentage was found in the 10–30 cm layer compared with the 0–10 cm.  相似文献   

17.
Outdoor pot and field experiments were conducted to assess the role of growing plants in agricultural ecosystem N2O emissions. N2O emissions from plants were quantified as the difference in soil-crop system N2O emissions before and immediately after cutting plants during the main growth stages in 2001–02 and 2002–03 winter wheat seasons. Emissions of N2O from plants depended on biomass within the same plant developmental status. Field results indicated that the seasonal contribution of N2O emissions from plants to ecosystem fluxes averaged 25%, ranging from 10% at wheat tillering to 62% at the heading stage. The fluxes of N2O emissions from plants varied between 0.3 and 3.9 mg N2O-N m−2 day−1 and its seasonal amount was equivalent to 0.23% of plant N released as N2O. A N2O emission coefficient (N2OE, mg N2O-N g−1 C day−1), defined as N2O-N emission in milligrams from per gram carbon of plant dry matter within a day, was represented by a 5-fold variation ranging from 0.021 to 0.004 mg N2O-N g C−1 day−1. A linear relationship (y=0.4611x+0.0015, r 2=0.9352, p < 0.001) between N2OE (y) and plant dark respiration rate (x, mg CO2-C g C−1 day−1) suggested that in the absence of photosynthesis, some N2O production in plant N assimilation was associated with plant respiration. Although this study could not show whether N2O was produced or transferred by winter wheat plants, these results indicated an important role for higher plant in N2O exchange. Identifying its potential contribution is critical for understanding agricultural ecosystem N2O sources.  相似文献   

18.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.  相似文献   

19.
The application of biochar as a soil amendment to improve soil fertility has been suggested as a tool to reduce soil‐borne CO2 and non‐CO2 greenhouse gas emissions, especially nitrous oxide (N2O). Both laboratory and field trials have demonstrated N2O emission reduction by biochar amendment, but the long‐term effect (>1 year) has been questioned. Here, we present results of a combined microcosm and field study using a powdered beech wood biochar from slow pyrolysis. The field experiment showed that both CO2 and N2O emissions were still effectively reduced by biochar in the third year after application. However, biochar did not influence the biomass yield of sunflower for biogas production (Helianthus annuus L.). Biochar reduced bulk density and increased soil aeration and thus reduced the water‐filled pore space (WFPS) in the field, but was also able to suppress N2O emission in the microcosms experiment conducted at constant WFPS. For both experiments, biochar had limited impact on soil mineral nitrogen speciation, but it reduced the accumulation of nitrite in the microcosms. Extraction of soil DNA and quantification of functional marker genes by quantitative polymerase chain reaction showed that biochar did not alter the abundance of nitrogen‐transforming bacteria and archaea in both field and microcosm experiments. In contradiction to previous experiments, this study demonstrates the long‐term N2O emission suppression potential of a wood biochar and thus highlights its overall climate change mitigation potential. While a detailed understanding of the underlying mechanisms requires further research, we provide evidence for a range of biochar‐induced changes to the soil environment and their change with time that might explain the often observed N2O emission suppression.  相似文献   

20.
Nitrous oxide (N2O) is a potent greenhouse gas with a high contribution from agricultural soils and emissions that depend on soil type, climate, crops and management practices. The N2O emissions therefore need to be included as an integral part of environmental assessments of agricultural production systems. An algorithm for N2O production and emission from agricultural soils was developed and included in the FASSET whole-farm model. The model simulated carbon and nitrogen (N) turnover on a daily basis. Both nitrification and denitrification was included in the model as sources for N2O production, and the N2O emissions depended on soil microbial and physical conditions. The model was tested on experimental data of N2O emissions from grasslands in UK, Finland and Denmark, differing in climatic conditions, soil properties and management. The model simulated the general time course of N2O emissions and captured the observed effects of fertiliser and manure management on emissions. Scenario analyses for grazed and cut grasslands were conducted to evaluate the effects of soil texture, climatic conditions, grassland management and N fertilisation on N2O emissions. The soils varied from coarse sand to sandy loam and the climatic variation was taken to represent the climatic variation within Denmark. N fertiliser rates were varied from 0 to 500 kg N ha−1. The simulated N2O emissions showed a non-linear response to increasing N rates with increasing emission factors at higher N rates. The simulated emissions increased with increasing soil clay contents. N2O emissions were slightly increased at higher temperatures, whereas increasing annual rainfall generally lead to decreasing emissions. Emissions were slightly higher from grazed grasslands compared with cut grasslands at similar rates of total N input (fertiliser and animal excreta). The results indicate higher emission factors and thus higher potentials for reducing N2O emissions for intensively grazed grasslands on fine textured soils than for extensive cut-based grasslands on sandy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号