首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken liver lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC1.1.1.27) catalyses the reversible reduction reaction of hydroxypyruvate to L-glycerate. It also catalyses the oxidation reaction of the hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form to glycolate. At pH 8, these latter two reactions are coupled. The coupled system equilibrium is attained when the NAD+/NADH ratio is greater than unity. Hydroxypyruvate binds to the enzyme at the same site as the pyruvate. When there are substances with greater affinity to this site in the reaction medium and their concentration is very high, hydroxypyruvate binds to the enzyme at the L-lactate site. In vitro and with purified preparation of lactate dehydrogenase, hydroxypyruvate stimulates the production of oxalate from glyoxylate-hydrated form and from NAD; the effect is due to the fact that hydroxypyruvate prevents the binding of non-hydrated form of glyoxylate to the lactate dehydrogenase in the pyruvate binding site. At pH 8, THE L-glycerate stimulates the production of glycolate from glyoxylate-non-hydrated form and NADH since hydroxypyruvate prevents the binding of glyoxylate-hydrated form to the enzyme  相似文献   

2.
Chicken liver lactate dehydrogenase (L-lactate : NAD+ oxidoreductase, EC 1.1.1.27) irreversibly catalyses the oxidation of glyoxylate (hydrated form) (I) to oxalate (pH = 9.6) and the reduction of (non-hydrated form) (II) to glycolate (pH = 7.4). (I) attaches to the enzyme in the pyruvate binding site and (II) attaches to the enzyme at the L-lactate binding site. The oxidation of (I) (pH = 9.6) is adapted to the following mechanism: (see book). The abortive complexes, E-NADH-I and E-NAD+-II, are responsible for the inhibition by excess substrate in the reduction and oxidation systems, respectively. When lactate dehydrogenase and NAD+ are preincubated, E-NAD+- NAD+ appears and causes inhibition by excess NAD+ in the glyoxylate-lactate dehydrogenase-NAD+ and L-lactate-lactate dehydrogenase-NAD+ systems; the second NAD+ molecule attaches to the enzyme at the L-lactate binding site.  相似文献   

3.
Lactate dehydrogenase (EC 1.1.1.27) catalyzes the NAD-dependent oxidation to (oxalate) and reduction (to glycollate) of glyoxylate. The kinetics of this disproportionation are in accord with the usual reaction pathway of lactate dehydrogenase:substrate inhibition with appropriate pH dependence occurs; a steady state in the ratio of NADH to NAD+ is set up during the reaction, has the expected dependence on pH, and is independent of the initial glyoxylate, coenzyme, and enzyme concentration. At pH 7 the lactate dehydrogenase-NADH complex is about fivefold more likely to react with and reduce glyoxylate (at a concentration of 100 mm) than to dissociate to produce free NADH, and the ratio of the fraction of the enzyme-NADH complex which dissociates to the fraction which reacts with and reduces glyoxylate varies with glyoxylate concentration and with pH in a manner in agreement with the normal reaction pathway of the enzyme. With all concentrations of glyoxylate and over the pH range 7–9.6 both free (not enzyme bound) NAD+ and free NADH are formed in the steady state of the disproportionation. From these results it is apparent that lactate dehydrogenase, like alcohol dehydrogenase (EC 1.1.1.1), catalyzes a disproportionation within the bounds of its normal kinetic reaction pathway.  相似文献   

4.
The catalytic properties of the purified horseshoe crab and seaworm d-lactate dehydrogenases were determined and compared with those of several l-lactate dehydrogenases. Apparent Km's and degrees of substrate inhibition have been determined for both enzymes for pyruvate, d-lactate, NAD+ and NADH. They are similar to those found for l-lactate dehydrogenases. The Limulus “muscle”-type lactate dehydrogenase is notably different from the “heart”-type lactate dehydrogenase of this organism in a number of properties.The Limulus heart and muscle enzymes have been shown by several criteria to be stereospecific for d-lactate. They also stereospecifically transfer the 4-α hydrogen of NADH to pyruvate. The turnover number for purified Limulus muscle lactate dehydrogenase is 38,000 moles NADH oxidized per mole of enzyme, per minute. Limulus and Nereis lactate dehydrogenases are inhibited by oxamate and the reduced NAD-pyruvate adduct.Limulus muscle lactate dehydrogenase is stoichiometrically inhibited by para-hydroxymercuribenzoate. Extrapolation to two moles parahydroxymercuribenzoate bound to one mole of enzyme yields 100% inhibition. Alkylation by iodoacetamide or iodoacetate occurs even in the absence of urea or guanidine-HCl. Evidence suggests that the reactive sulfhydryl group may not be located at the coenzyme binding site.Reduced coenzyme (NADH or the 3-acetyl-pyridine analogue of NADH) stoichiometrically binds to Limulus muscle lactate dehydrogenase (two moles per mole of enzyme).Several pieces of physical and catalytic evidence suggest that the d- and l-lactate dehydrogenase are products of homologous genes. A consideration of a possible “active site” shows that as few as one or two key conservative amino acid changes could lead to a reversal of the lactate stereospecificity.  相似文献   

5.
T. Betsche  K. Bosbach  B. Gerhardt 《Planta》1979,146(5):567-574
By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD+-dependent L-lactate oxidation (10-4 kat kg-1 protein), as well as NADH-dependent pyruvate reduction (10-3 kat kg-1 protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate oxidizing enzyme. These enzymes could be separated from the protein displaying lactate dehydrogenase activity by gel filtration and electrophoresis and distinguished from it by their known properties. The enzyme under consideration does not oxidize D-lactate, and reduces pyruvate to L-lactate (the configuration of which was determined using highly specific animal L-lactate dehydrogenase). Based on these results the studied Capsella leaf enzyme is classified as L-lactate dehydrogenase (EC 1.1.1.27). It has a Km value of 0.25 mmol l-1 (pH 7.0, 0.3 mmol l-1 NADH) for pyruvate and of 13 mmol l-1 (pH 7.8, 3 mmol l-1 NAD+) for L-lactate. Lactate dehydrogenase activity was also detected in the leaves of several other plants.Abbreviation FMN flavin adenine mononucleotide  相似文献   

6.
The metabolism of hydroxypyruvate to oxalate was studied in isolated rat hepatocytes. [14C]Oxalate was produced from [2-14C]- and [3-14C]- but not [1-14C]hydroxypyruvate. No oxalate was produced from similarly labeled pyruvate. The mechanism by which hydroxypyruvate is metabolized to oxalate involves decarboxylation at the carbon 1 position as the initial step. This activity was distinct from that which produced CO2 from the carbon 1 position of pyruvate. Hydroxypyruvate decarboxylase activity was found mainly in the mitochondria, with the remainder (25%) in the cytosol. No activity was present in the peroxisomes, the probable site of oxalate production from glycolate and glyoxylate. Hydroxypyruvate, but not pyruvate stimulated [14C]oxalate production from [U-14C]fructose, suggesting that hydroxypyruvate is either an intermediate in the fructose-oxalate pathway, or that it prevents carbon from leaving that pathway. The lack of effect of pyruvate in this regard is evidence against redox being the primary effect of hydroxypyruvate and focuses attention on hydroxypyruvate and its precursors as important sources of carbon for oxalate synthesis from both carbohydrate and protein.  相似文献   

7.
Cell-free extracts of Chlorella pyrenoidosa contained two enzymes capable of oxidizing d-lactate; these were glycolate dehydrogenase and NAD(+)-dependent d-lactate dehydrogenase. The two enzymes could be distinguished by differential centrifugation, glycolate dehydrogenase being largely particulate and NAD(+)-d-lactate dehydrogenase being soluble. The reduction of pyruvate by NADH proceeded more rapidly than the reverse reaction, and the apparent Michaelis constants for pyruvate and NADH were lower than for d-lactate and NAD(+). These data indicated that under physiological conditions, the NAD(+)-linked d-lactate dehydrogenase probably functions to produce d-lactate from pyruvate.Lactate dehydrogenase activity dependent on NAD(+) was found in a number of other green algae and in the green tissues of a few lower land plants. When present in species which contain glycolate oxidase rather than glycolate dehydrogenase, the enzyme was specific for l-lactate rather than d-lactate. A cyclic system revolving around the production and utilization of d-lactate in some species and l-lactate in certain others is proposed.  相似文献   

8.
1. L-Lactate dehydrogenase from lettuce (Lactuca sativa) leaves was purified to electrophoretic homogeneity by affinity chromatography. 2. In addition to its NAD(H)-dependent activity with L-lactate and pyruvate, the enzyme also catalyses the reduction of hydroxypyruvate and glyoxylate. The latter activities are not due to a contamination of the enzyme preparations with hydroxypyruvate reductase. 3. The enzyme shows allosteric properties that are markedly by the pH. 4. ATP is a potent inhibitor of the enzyme. The kinetic data suggest that the inhibition by ATP is competitive with respect to NADH at pH 7.0 and 6.2. The existence of regulatory binding sites for ATP and NADH is discussed. 5. Bivalent metal cations and fructose 6-phosphate relieve the ATP inhibition of the enzyme. 6. A function of leaf L-lactate dehydrogenase is proposed as a component of the systems regulating the cellular pH and/or controlling the concentration of reducing equivalents in the cytoplasm of leaf cells.  相似文献   

9.
Hydroxypyruvate and glycolate inhibited the oxidation of [U-14C]glyoxylate to [14C]oxalate in isolated perfused rat liver, but stimulated total oxalate and glycolate synthesis. [14C]Oxalate synthesis from [14C]glycine similarly inhibited by hydroxypyruvate, but conversion of [14C1]glycolate to [4C]oxalate was increased three-fold. Pyruvate had no effect on the synthesis of [14C]oxalate or total oxalate. The inhibition studies suggest that hydroxypyruvate is a precursor of glycolate and oxalate and that the conversion of glycolate to oxalate does not involve free glyoxylate as an intermediate. [14C3]Hydroxypyruvate, but not [14C1]hydroxypyruvate, was oxidized to [14C]oxalate in isolated perfused rat liver. Isotope dilution studies indicate the major pathway involves the decarboxylation of hydroxypyruvate forming glycolaldehyde which is subsequently oxidized to oxalate via glycolate. The oxidation of serine to oxalate appears to proceed predominantly via hydroxypyruvate rather than glycine or ethanolamine. The hyperoxaluria of L-glyceric aciduria, primary hyperoxaluria type II, is induced by the oxidation of the hydroxypyruvate, which accumulates because of the deficiency of D-glyceric dehydrogenase, to oxalate.  相似文献   

10.
Human lactate dehydrogenase (LDH) is thought to contribute to the oxidation of glyoxylate to oxalate and thus to the pathogenesis of disorders of endogenous oxalate overproduction. Glyoxylate reductase (GRHPR) has a potentially protective role metabolising glyoxylate to the less reactive glycolate. In this paper, the kinetic parameters of recombinant human LDHA, LDHB and GR have been compared with respect to their affinity for glyoxylate and related substrates. The Km values and specificity constants (Kcat/K(M)) of purified recombinant human LDHA, LDHB and GRHPR were determined for the reduction of glyoxylate and hydroxypyruvate. K(M) values with glyoxylate were 29.3 mM for LDHA, 9.9 mM for LDHB and 1.0 mM for GRHPR. For the oxidation of glyoxylate, K(M) values were 0.18 mM and 0.26 mM for LDHA and LDHB respectively with NAD+ as cofactor. Overall, under the same reaction conditions, the specificity constants suggest there is a fine balance between the reduction and oxidation reactions of these substrates, suggesting that control is most likely dictated by the ambient concentrations of the respective intracellular cofactors. Neither LDHA nor LDHB utilised glycolate as substrate and NADPH was a poor cofactor with a relative activity less than 3% that of NADH. GRHPR had a higher affinity for NADPH than NADH (K(M) 0.011 mM vs. 2.42 mM). The potential roles of LDH isoforms and GRHPR in oxalate synthesis are discussed.  相似文献   

11.
Coenzyme specificity of mammalian liver D-glycerate dehydrogenase   总被引:1,自引:0,他引:1  
D-Glycerate dehydrogenase (glyoxylate reductase) was partially purified from rat liver by anion- and cation-exchange chromatography. When assayed in the direction of D-glycerate or glycolate formation, the enzyme was inhibited by high (greater than or equal to 0.5 mM), unphysiological concentrations of hydroxypyruvate or glyoxylate much more potently in the presence of NADPH than in the presence of NADH. However, the dehydrogenase displayed a much greater affinity for NADPH (Km less than 1 microM) than for NADH (Km = 48-153 microM). Furthermore, NADP was over 1000-fold more potent than NAD in inhibiting the enzyme competitively with respect to NADH. NADP also inhibited the reaction competitively with respect to NADPH whereas NAD, at concentrations of up to 10 mM had no inhibitory effect. When measured by the formation of hydroxypyruvate from D-glycerate, the enzyme also displayed a much greater affinity for NADP than for NAD. These properties indicate that liver D-glycerate dehydrogenase functions physiologically as an NADPH-specific reductase. In agreement with this conclusion, the addition of hydroxypyruvate or glyoxylate to suspensions of rat hepatocytes stimulated the pentose-phosphate pathway. The coenzyme specificity of D-glycerate dehydrogenase is discussed in relation to the biochemical findings made in D-glyceric aciduria and in primary hyperoxaluria type II (L-glyceric aciduria).  相似文献   

12.
Glyoxylate and hydroxypyruvate are metabolites involved in the pathway of carbon in photorespiration. The chief glyoxylate-reducing enzyme in leaves is now known to be a cytosolic glyoxylate reductase that uses NADPH as the preferred cofactor but can also use NADH. Glyoxylate reductase has been isolated from spinach leaves, purified to homogeneity, and characterized kinetically and structurally. Chloroplasts contain lower levels of glyoxylate reductase activity supported by both NADPH and NADH, but it is not yet known whether a single chloroplastic enzyme catalyzes glyoxylate reduction with both cofactors. The major hydroxypyruvate reductase activity of leaves has long been known to be a highly active enzyme located in peroxisomes; it uses NADH as the preferred cofactor. To a lesser extent, NADPH can also be used by the peroxisomal enzyme. A second hydroxypyruvate reductase enzyme is located in the cytosol; it preferentially uses NADPH but can also use NADH as cofactor. In a barley mutant deficient in peroxisomal hydroxypyruvate reductase, the NADPH-preferring cytosolic form of the enzyme permits sufficient rates of hydroxypyruvate reduction to support continued substrate flow through the terminal stages of the photosynthetic carbon oxidation (glycolate/glycerate) pathway. The properties and metabolic significance of the cytosolic and organelle-localized glyoxylate and hydroxypyruvate reductase enzymes are discussed.  相似文献   

13.
Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.2 A resolution. There are four copies of GRHPR in the crystallographic asymmetric unit: in each homodimer, one subunit forms a ternary (enzyme+NADPH+reduced substrate) complex, and the other a binary (enzyme+NADPH) form. The spatial arrangement of the two enzyme domains is the same in binary and ternary forms. This first crystal structure of a true ternary complex of an enzyme from this family demonstrates the relationship of substrate and catalytic residues within the active site, confirming earlier proposals of the mode of substrate binding, stereospecificity and likely catalytic mechanism for these enzymes. GRHPR has an unusual substrate specificity, preferring glyoxylate and hydroxypyruvate, but not pyruvate. A tryptophan residue (Trp141) from the neighbouring subunit of the dimer is projected into the active site region and appears to contribute to the selectivity for hydroxypyruvate. This first crystal structure of a human GRHPR enzyme also explains the deleterious effects of naturally occurring missense mutations of this enzyme that lead to PH2.  相似文献   

14.
Synthesis of oxalic Acid by enzymes from lettuce leaves   总被引:3,自引:0,他引:3       下载免费PDF全文
A rapid purification of lactate dehydrogenase and glycolate oxidase from lettuce (Lactuca sativa) leaves is described. The kinetics of both enzymes are reported in relation to their possible roles in the production of oxalate. Lettuce lactate dehydrogenase behaves like mammalian dehydrogenase, catalyzing the dismutation of glyoxylate to glycolate and oxalate. A model is proposed in which glycolate oxidase in the peroxisomes and lactate dehydrogenase in the cytosol are involved in the production of oxalate. The effect of pH on the balance between oxalate and glycolate produced from glyoxylate suggests that in leaves lactate dehydrogenase may function as part of an oxalate-based biochemical, pH-stat.  相似文献   

15.
In this study, we attempted to elucidate the metabolic pathway and enzymes actually involved in oxalate formation from glycolate in rat and human liver. In rat liver, the formation of oxalate from glycolate appeared to take place predominantly via glyoxylate. The oxalate formation from glycolate observed with crude enzyme preparations was almost entirely accounted for by the sequential actions of glycolate oxidase and xanthine oxidase (XOD) or lactate dehydrogenase (LDH). Under the conditions used, no significant activity was attributable to glycolate dehydrogenase, an enzyme reported to catalyze the direct oxidation of glycolate to oxalate. Among the three enzymes known to catalyze the oxidation of glyoxylate to oxalate, glycolate oxidase and XOD showed much lower activities (a higher Km and lower Vmax) toward glyoxylate than those with the respective primary substrates. As to LDH, none of the LDH subunit-deficient patients examined showed profoundly lowered urinary oxalate excretion. Based on the results obtained, the presumed efficacies in vivo of individual enzymes, as catalysts of glyoxylate oxidation, and the in vivo conditions assumed to allow their catalysis of oxalate production are discussed.  相似文献   

16.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

17.
乙醇酸、乙醛酸和草酸能明显促进烟草(Nicotiana rustica)叶片在黑暗中的硝酸还原,光呼吸抑制剂a-羟基吡啶甲烷磺酸能消除前二者的促进作用而不能完全消除草酸的作用。草酸+NAD~+能显著促进离体的硝酸还原。烟叶提取液加入草酸和NAD~+后生成NADH和CO_2认为活体内由乙醛酸氧化生成的草酸是经脱氢生成NADH供硝酸还原之用。未能证明在烟叶内存在乙醇酸脱氨酶,因此排除由乙醇酸直接脱氢以还原硝酸的可能。  相似文献   

18.
Hydroxypyruvate reductase was purified to homogeneity from the facultative methylotroph Methylobacterium extorquens AM1. It has a molecular mass of about 71 kDa, and it consists of two identical subunits with a molecular mass of about 37 kDa. This enzyme uses both NADH (Km = 0.04 mM) and NADPH (Km = 0.06 mM) as cofactors, uses hydroxypyruvate (Km = 0.1 mM) and glyoxylate (Km = 1.5 mM) as the only substrates for the forward reaction, and carries out the reverse reaction with glycerate (Km = 2.6 mM) only. It was not possible to detect the conversion of glycolate to glyoxylate, a proposed role for this enzyme. Kinetics and inhibitory studies of the enzyme from M. extorquens AM1 suggest that hydroxypyruvate reductase is not a site for regulation of the serine cycle at the level of enzyme activity.  相似文献   

19.
P A Tipton  J Peisach 《Biochemistry》1991,30(3):739-744
Mn2+.tartrate dehydrogenase.substrate complexes have been examined by electron spin echo envelope modulation spectroscopy. The occurrence of dipolar interactions between Mn2+ and 2H on [2H]pyruvate and [4-2H]NAD(H) confirms that Mn2+ binds at the enzyme active site. The 2H signal arising from labeled pyruvate was lost if the sample was incubated at room temperature, indicating that the enzyme catalyzes exchange between the pyruvate methyl protons and solvent protons. Mn-133Cs dipolar coupling was also observed, which suggests that the monovalent cation cofactor also binds in the active site. The tartrate analogue oxalate was observed to have a significant effect on the binding of NAD(H). Oxalate appears to constrain the binding of NAD(H) so that the nicotinamide portion of the cofactor is held in close proximity to Mn2+. Spectra of enzyme complexes prepared with (R)-[4-2H]NADH showed a more intense 2H signal than analogous complexes prepared with (S)-[4-2H]NADH, demonstrating that the pro-R position of NADH is closer to Mn2+ than the pro-S position and suggesting that tartrate dehydrogenase is an A-side-specific dehydrogenase. Oxalate also affected Cs+ binding; the intensity of the 133Cs signal increased in the presence of oxalate, which suggest that oxalate facilitates binding of Cs+ to the active site or that Cs+ binds closer to Mn2+ when oxalate is present. In addition to signals from substrates, electron spin echo envelope modulation spectra revealed 14N signals that arose from coordination to Mn2+ by nitrogen-containing ligands from the protein; however, the identity of this ligand or ligands remains obscure.  相似文献   

20.
Oxalate synthesis in human hepatocytes is not well defined despite the clinical significance of its overproduction in diseases such as the primary hyperoxalurias. To further define these steps, the metabolism to oxalate of the oxalate precursors glycolate and glyoxylate and the possible pathways involved were examined in HepG2 cells. These cells were found to contain oxalate, glyoxylate, and glycolate as intracellular metabolites and to excrete oxalate and glycolate into the medium. Glycolate was taken up more effectively by cells than glyoxylate, but glyoxylate was more efficiently converted to oxalate. Oxalate was formed from exogenous glycolate only when cells were exposed to high concentrations. Peroxisomes in HepG2 cells, in contrast to those in human hepatocytes, were not involved in glycolate metabolism. Incubations with purified lactate dehydrogenase suggested that this enzyme was responsible for the metabolism of glycolate to oxalate in HepG2 cells. The formation of 14C-labeled glycine from 14C-labeled glycolate was observed only when cell membranes were permeabilized with Triton X-100. These results imply that peroxisome permeability to glycolate is restricted in these cells. Mitochondria, which produce glyoxylate from hydroxyproline metabolism, contained both alanine:glyoxylate aminotransferase (AGT)2 and glyoxylate reductase activities, which can convert glyoxylate to glycine and glycolate, respectively. Expression of AGT2 mRNA in HepG2 cells was confirmed by RT-PCR. These results indicate that HepG2 cells will be useful in clarifying the nonperoxisomal metabolism associated with oxalate synthesis in human hepatocytes. liver; peroxisomes; hepatocytes; hyperoxaluria; alanine:glyoxylate aminotransferase; glyoxylate reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号