首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV), codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs) to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192–1459). Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope 1231PTGSGKSTK1239 (EP05) or core motif 1373IPFYGKAI1380 (EP21), respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59–79% chronic and weakly with 30–58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.  相似文献   

2.
We have probed the acetylcholine receptor (AcChR) molecule with six anti-AcChR monoclonal antibodies (mAbs) whose binding to the AcChR is inhibited or blocked by alpha-bungarotoxin (alpha BgTx). mAbs bound with a maximum stoichiometry of either one mAb (387D, 247G) or two mAbs (383C, 572C, 370C, 249E) per AcChR monomer, and the extent to which they inhibited alpha BgTx binding directly correlated with their stoichiometry of binding. The effect of mAbs on the alpha BgTx and cholinergic ligand binding properties of the AcChR molecule defined three major categories of mAbs: those that block alpha BgTx and carbamylcholine (agonist) binding, but do not block d-tubocurarine (antagonist) binding (383C, 572C, 370C and 249E); mAb 387D, which blocks agonist binding and partially blocks alpha BgTx and d-tubocurarine binding; and mAb 247G, which does not affect agonist binding, blocks at most 50% of the alpha BgTx binding sites, and decreases the affinity of the high affinity component of d-tubocurarine binding (Mihovilovic, M., and Richman, D. P. (1984) J. Biol. Chem. 259, 15051-15059). Except for mAb 247G, these mAbs strongly competed with each other for binding to the AcChR. In contrast, mAb 247G blocks about 50% of the binding of all the other mAbs. The results demonstrate the ability of mAbs to stabilize different conformational states of the AcChR and to probe cholinergic epitopes of functional importance. They also indicate the nonequivalence of the two alpha-toxin binding regions of the AcChR molecule and suggest that it is possible to identify epitopes within the alpha BgTx binding region that when bound produce differential effects on the binding of the agonist (carbamylcholine) and the antagonist (d-tubocurarine).  相似文献   

3.
C Chen  S Wang  H Wang  X Mao  T Zhang  G Ji  X Shi  T Xia  W Lu  D Zhang  J Dai  Y Guo 《PloS one》2012,7(8):e43845

Background

Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed.

Methods and Findings

We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo.

Conclusions

The combination of two mAbs recognizing different receptors'' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.  相似文献   

4.
Merozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)). Certain MSP-1-specific monoclonal antibodies (mAbs) react with conformational epitopes contained within the two epidermal growth factor domains that comprise MSP-1(19), and are classified as either inhibitory (inhibit processing of MSP-1(42) and erythrocyte invasion), blocking (block the binding and function of the inhibitory mAb), or neutral (neither inhibitory nor blocking). We have mapped the epitopes for inhibitory mAbs 12.8 and 12.10, and blocking mAbs such as 1E1 and 7.5 by using site-directed mutagenesis to change specific amino acid residues in MSP-1(19) and abolish antibody binding, and by using PEPSCAN to measure the reaction of the antibodies with every octapeptide within MSP-1(42). Twenty-six individual amino acid residue changes were made and the effect of each on the binding of mAbs was assessed by Western blotting and BIAcore analysis. Individual changes had either no effect, or reduced, or completely abolished the binding of individual mAbs. No two antibodies had an identical pattern of reactivity with the modified proteins. Using PEPSCAN each mAb reacted with a number of octapeptides, most of which were derived from within the first epidermal growth factor domain, although 1E1 also reacted with peptides spanning the processing site. When the single amino acid changes and the reactive peptides were mapped onto the three-dimensional structure of MSP-1(19), it was apparent that the epitopes for the mAbs could be defined more fully by using a combination of both mutagenesis and PEPSCAN than by either method alone, and differences in the fine specificity of binding for all the different antibodies could be distinguished. The incorporation of several specific amino acid changes enabled the design of proteins that bound inhibitory but not blocking antibodies. These may be suitable for the development of MSP-1-based vaccines against malaria.  相似文献   

5.
To map structural and functional epitopes of the cytomatrix protein plectin, a set of mAbs was prepared by immunization of mice. Using immunoblot analysis of plectin fragments obtained after limited digestion with various proteases, two groups of mAbs were distinguished. The epitopes of one group (1) were located on a 130-kD terminal segment of the plectin 300-kD polypeptide chain, whereas those of the other group (2) bound within a 40kD segment confined to a central domain of the polypeptide chain. Domains containing the epitopes of group 2 mAbs were shown to include in vitro phosphorylation sites for kinase A, whereas kinase C phosphorylation sites were found on the same terminal segment that contained group 1 mAb epitopes. Rotary shadowing EM of mAb (Fab fragment) -decorated plectin molecules at various states of aggregation, ranging from characteristic dumbbell-shaped single molecules to highly complex multimeric structures, revealed that the epitopes of group 1 as well as those of group 2 mAbs were located on plectin's roughly 200-nm long rod domain interlinking its two globular end domains. Epitopes of group 1 mAbs were localized within a region near the center of the rod, those of group 2 in more peripheral sections near the globular end domains. Solid-phase binding assays carried out in the presence of Fab fragments of mAbs demonstrated an interference of certain group 1 mAbs in the interactions of plectin with vimentin and lamin B. On the other hand, plectin's self-interaction was inhibited mainly by Fab fragments with epitopes in the peripheral rod domain (group 2 mAbs). Together, these results suggested that the molecular binding sites of plectin for vimentin and lamin B, as well as the phosphorylation sites for kinase C, were confined to a defined central section of plectin's rod domain. In addition, they suggest an involvement of peripheral rod sections in plectin self-association.  相似文献   

6.
Using a surface plasmon resonance (SPR)-based biosensor (BIA-technology), we have studied the interaction of ten different murine monoclonal antibodies (mAbs, all IgG1), raised against the main protein constituent of human low density lipoprotein (LDL), i.e. the apolipoprotein B-100 (apoB-100). These mAbs identify distinct domains on apoB-100, relevant to LDL-receptor interaction: epitopes in the amino-terminal region (mAbs L7, L9, L10 and L11: aa 1–1297) and in the middle region (mAb 6B: aa 1480–1693; mAbs 2A, 3B: aa 2152–2377; mAbs 9A, L2 and L4: aa 2657–3248) of native apoB-100. A multisite binding analysis was performed to further characterize the epitopes recognized by all these mAbs. A rabbit anti-mouse IgG1-Fc antibody (RAM.Fc) was first coupled to the gold surface in order to capture one anti-human apoB-100 mAb. ApoB-100 protein was subsequently injected and allowed to react with this immobilized, oriented antibody. Multisite binding assays were then performed, by sequentially flowing other mAbs, in different orders, over the sensing surface. The capacity of each mAb to interact with the entrapped apoB-100 in a multimolecular complex was monitored in real time by SPR. The results achieved were comparable to those obtained by western immunoblotting using the same reagents. However, SPR ensures a more detailed epitope identification, demonstrating that BIA-technology can be successfully used for mapping distinct epitopes on apoB-100 protein in solution dispensing with labels and secondary tracers; moreover, compared with conventional immunoassays, it is significantly time saving (CNR-P.F. MADESS 2).  相似文献   

7.
To determine the correlation between the immunoreaction against the core structure of human immunodeficiency virus type (HIV-1) transmembrane protein gp41 epitopes and the disease progression, it is essential to evaluate the anti-core structure antibody epitopes and the humoral immunity against the epitopes. For this purpose we evaluated monoclonal antibodies (mAbs) against the gp41 core structure such as mAbs 50.69, 98.6 and T26, by Western blotting (WB) and flow cytometry. WB showed mAbs 50.69 and 98.6 bound to both monomeric and oligomeric gp41, and mAb T26 exclusively bound to oligomeric gp41. We evaluated the sera from Pneumocystis pneumonia patients (PCP; n=7) and long-term survivors (LTS; n=7). Competition assay with sera and mAbs for binding to H9 cells infected with HIV-1 IIIB virus was done using flow cytometry. The results revealed that PCP sera as well as LTS sera inhibited the binding of all the three mAbs, and the PCP sera inhibited mAb T26 binding more efficiently than LTS. Therefore, PCP patients retain competing immunity to antibodies against not only the shared epitopes of the core structure (binding sites of mAbs 50.69 and 98.6) but also against oligomeric gp41 specific epitope (binding site of mAb T26).  相似文献   

8.
A panel of five stable hybridoma cell lines secreting mono- clonal antibodies (mAbs) were produced using a French mechanically transmitted isolate of barley mild mosaic virus (BaMMV-MF) as antigen. All mAbs reacted with BaMMV-MF in two enzyme-linked immunosorbent assay (ELISA) formats: triple antibody sandwich (TAS)-ELISA and antigen-coated plate (ACP)-ELISA. These mAbs recognized epitopes, present on both degraded virions and intact particles. Four mAbs (5C8, 1D5, 1B12, 1A12) belong to the immunoglobulin (Ig)G class and one mAb (3A9) represents an IgM. The five mAbs were compared in TAS- and ACP-ELISA for reactivity with numerous French isolates. These isolates were detected in TAS- and ACP-ELISA with four mAbs (5C8, 1D5, 1B12, 3A9). In both ELISA systems the mAb 1A12 recognized only an epitope specific for BaMMV-MF. All mAbs, except 1A12 recognized also the German (BaMMV-MG), Italian (BaMMV-I) and Japanese (BaMMV-Ka1) isolates in both TAS- and ACP-ELISA. The Japanese isolate (BaMMV-Na1) only reacted with two mAbs (1D5, 5C8) in TAS-ELISA. Only one mAb (3A9) reacted with BaMMV-MF, BaMMV-PF, BaMMV-I,BaMMV-MG and BaMMV-Ka1 in Western blot. These mAbs make it possible to distingish between the three BaMMV serotypes.  相似文献   

9.
Monoclonal antibodies against soybean Bowman-Birk protease inhibitor (BBI) have been generated and used to detect and quantify BBI in foods, soybean germplasm, and animal tissues and fluids. The purpose of this study was to determine the recognition sites of two monoclonal antibodies to BBI (mAb 238 and mAb 217) in relation to the protease-inhibitory sites of BBI. The results showed that (1) the binding of mAb 238 can be blocked by trypsin and that of mAb 217 by chymotrypsin; (2) the trypsin or chymotrypsin inhibitory activities of BBI are blocked by mAb 238 or mAb 217, respectively; and (3) mAb 238 failed to recognize a tryptic loop mutant BBI variant and mAb 217 was unable to bind a chymotryptic loop mutant BBI variant. These findings demonstrate that the epitopes recognized by mAb 238 and mAb 217 reside, at least in part, in the tryptic and chymotryptic loops of BBI, respectively.  相似文献   

10.
Comparison of the inferred amino acid sequence of outer-membrane protein PIB from gonococcal strain P9 with those from other serovars reveals that sequence variations occur in two discrete regions of the molecule centred on residues 196 (Var1) and 237 (Var2). A series of peptides spanning the amino acid sequence of the protein were synthesized on solid-phase supports and reacted with a panel of monoclonal antibodies (mAbs) which recognize either type-specific or conserved antigenic determinants on PIB. Four type-specific mAbs reacted with overlapping peptides in Var1 between residues 192-198. Analysis of the effect of amino acid substitutions revealed that the mAb specificity is generated by differences in the effect of single amino acid changes on mAb binding, so that antigenic differences between strains are revealed by different patterns of reactivity within a panel of antibodies. The variable epitopes in Var1 recognized by the type-specific mAbs lie in a hydrophilic region of the protein exposed on the gonococcal surface, and are accessible to complement-mediated bactericidal lysis. In contrast, the epitope recognized by mAb SM198 is highly conserved but is not exposed in the native protein and the antibody is non-bactericidal. However, the conserved epitope recognized by mAb SM24 is centred on residues 198-199, close to Var1 , and is exposed for bactericidal killing.  相似文献   

11.
Binding of a panel of eight monoclonal antibodies (mAbs) with the C domain of angiotensin converting enzyme (ACE) to human testicular ACE (tACE) (corresponding to the C domain of the somatic enzyme) was studied and the inhibition of the enzyme by the mAb 4E3 was found. The dissociation constants of complexes of two mAbs, IB8 and 2H9, with tACE were 2.3 +/- 0.4 and 2.5 +/- 0.4 nM, respectively, for recombinant tACE and 1.6 +/- 0.3 nM for spermatozoid tACE. Competition parameters of mAb binding with tACE were obtained and analyzed. As a result, the eight mAbs were divided into three groups, whose binding epitopes did not overlap: (1) 1E10, 2B11, 2H9, 3F11, and 4E3; (2) 1B8 and 3F10; and (3) IB3. A diagram demonstrating mAb competitive binding with tACE was proposed. Comparative analysis of mAb binding to human and chimpanzee ACE was carried out, which resulted in revealing of two amino acid residues, Lys677 and Pro730, responsible for binding of three antibodies, 1E10, 1B8, and 3F10. It was found by mutation of Asp616 located close to Lys677 that the mAb binding epitope 1E10 contains Asp616 and Lys677, whereas mAbs 1B8 and 3F10 contain Pro730.  相似文献   

12.
The interaction of Escherichia coli F1 ATPase (ECF1) with several different monoclonal antibodies (mAbs) specific for the alpha subunit has been examined. The epitopes for each of the mAbs have been localized by using molecular biological approaches to generate fragments of the alpha subunit. The binding of several of the mAbs has also been examined by cryoelectron microscopy of ECF1 Fab complexes. One of the mAbs, alpha II, bound in the region Asn 109-Val 153 without affecting ATPase activity. Most of the mAbs bound in the C-terminal third of the alpha subunit. MAb alpha 1 bound between residues Gln 443 and Trp 513. This mAb activated ATPase activity and was visualized in cryoelectron microscopy, superimposed on the alpha subunit, indicating that the epitope was on the top or bottom of ECF1 in the hexagonal projection. Other mAbs to the C-terminus, including alpha D which also activated the enzyme, reacted between Gly 371 and Trp 513 but failed to bind to small overlapping fragments within this sequence. The epitopes for these mAbs are probably formed by the folded polypeptide which occurs only in Western analysis when long stretches of the alpha subunit are present, suggesting that the C-terminus of alpha is a self-folding domain. In cryoelectron microscopy, Fab fragments for alpha D were seen extending from the sides of the ECF1 complex in hexagonal projection.  相似文献   

13.
Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes.  相似文献   

14.
The chemokine receptor CCR5 is the major coreceptor for R5 human immunodeficiency virus type-1 strains. We mapped the epitope specificities of 18 CCR5 monoclonal antibodies (mAbs) to identify domains of CCR5 required for chemokine binding, gp120 binding, and for inducing conformational changes in Env that lead to membrane fusion. We identified mAbs that bound to N-terminal epitopes, extracellular loop 2 (ECL2) epitopes, and multidomain (MD) epitopes composed of more than one single extracellular domain. N-terminal mAbs recognized specific residues that span the first 13 amino acids of CCR5, while nearly all ECL2 mAbs recognized residues Tyr-184 to Phe-189. In addition, all MD epitopes involved ECL2, including at least residues Lys-171 and Glu-172. We found that ECL2-specific mAbs were more efficient than NH2- or MD-antibodies in blocking RANTES or MIP-1beta binding. By contrast, N-terminal mAbs blocked gp120-CCR5 binding more effectively than ECL2 mAbs. Surprisingly, ECL2 mAbs were more potent inhibitors of viral infection than N-terminal mAbs. Thus, the ability to block virus infection did not correlate with the ability to block gp120 binding. Together, these results imply that chemokines and Env bind to distinct but overlapping sites in CCR5, and suggest that the N-terminal domain of CCR5 is more important for gp120 binding while the extracellular loops are more important for inducing conformational changes in Env that lead to membrane fusion and virus infection. Measurements of individual antibody affinities coupled with kinetic analysis of equilibrium binding states also suggested that there are multiple conformational states of CCR5. A previously described mAb, 2D7, was unique in its ability to effectively block both chemokine and Env binding as well as coreceptor activity. 2D7 bound to a unique antigenic determinant in the first half of ECL2 and recognized a far greater proportion of cell surface CCR5 molecules than the other mAbs examined. Thus, the epitope recognized by 2D7 may represent a particularly attractive target for CCR5 antagonists.  相似文献   

15.
The different fragments of the third complement component, C3, generated upon complement activation/inactivation have the ability to bind to several other complement components and receptors as well as to proteins of foreign origin. These multiple reactivities of C3 fragments are associated with a series of conformational changes occurring in the C3 molecule during its degradation. The conformations acquired by the different C3 fragments are also associated with the exposure of neoantigenic epitopes that are specific for (a) particular fragment(s). In order to study these epitopes and thus the conformational changes occurring in C3, monoclonal antibodies (mAbs) recognizing such epitopes were produced in Balb/c mice after immunization with denatured human C3. Two of the three antibodies (7D84.1 and 7D264.6) presented in this study recognized predominantly surface-bound iC3b, and one mAb (7D323.1) recognized both surface-bound and fluid-phase iC3b. Although none of the mAbs recognized any other fluid-phase C3 fragment, all three antibodies detected micro-titre-plate-fixed C3b and iC3b, but not C3c or C3d. In addition to the reaction with human C3, mAb 7D323.1 also bound to micro-titre-plate-fixed rabbit C3. The epitopes recognized by the three mAbs were further localized by using synthetic peptides that were designed on the basis of the differential binding of the mAbs to the C3 fragments. All three antibodies reacted with C3-(924-965)-peptide, which represents the region of C3 between the kallikrein-cleavage site (923-924) and the elastase-cleavage site (965-966). On the basis of the binding of the mAbs to five different overlapping peptides spanning the region between residues 924 and 965 of the human C3 sequence, and the sequence similarity between human C3 and rabbit C3 within this area, the epitopes recognized by these antibodies are mapped. The contribution of the individual amino acid residues in the formation of the epitopes is discussed.  相似文献   

16.
Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes. This was confirmed by the cryo-electron microscopy (cryo EM) structure of the poliovirus type 3 complexed with the corresponding antigen-binding fragments (Fabs) of the mAbs, which revealed that Fabs 4B7-1H8-2E10 and 4H8-3A12-2D3 epitopes share common amino acids. In contrast, a less efficient competition between mAb 1E3-3G4 and mAb 4H8-3A12-2D3 was observed by FCS, and there was no competition between mAbs 1E3-3G4 and 4B7-1H8-2E10. The Fab 1E3-3G4 epitope was found by cryoEM to be close to but distinct from the epitopes of both Fabs 4H8-3A12-2D3 and 4B7-1H8-2E10. Therefore, the FCS data additionally suggest that mAbs 4H8-3A12-2D3 and 4B7-1H8-2E10 bind in a different orientation to their epitopes, so that only the former sterically clashes with the mAb 1E3-3G4 bound to its epitope. Our results demonstrate that FCS can be a highly sensitive and useful tool for assessing the potential overlap of mAbs on viral particles.  相似文献   

17.
To circumvent autoimmune oophoritis after immunization with zona pellucida (ZP) glycoproteins, synthetic peptides encompassing B cell epitope(s) and devoid of oophoritogenic T cell epitopes as immunogens have been proposed. In this study, bonnet monkey (Macaca radiata) ZP glycoprotein-B (bmZPB) was expressed as polyhistidine fusion protein in Escherichia coli. Rabbit polyclonal antibodies against recombinant bmZPB (r-bmZPB) significantly inhibited human sperm-oocyte binding. To map B cell epitopes on ZPB, a panel of 7 murine monoclonal antibodies (mAbs) was generated against r-bmZPB. All 7 mAbs, when tested in an indirect immunofluorescence assay, reacted with bonnet monkey ZP, and only 6 recognized human zonae. Monoclonal antibodies MA-809, -811, -813, and -825 showed significant inhibition in the binding of human spermatozoa to human ZP in a hemizona assay. Epitope-mapping studies using multipin peptide synthesis strategy revealed that these 4 mAbs recognized a common epitope corresponding to amino acids (aa) 136-147 (DAPDTDWCDSIP). Competitive binding studies revealed that the synthetic peptide corresponding to the identified epitope (aa 136-147) inhibited the binding of MA-809, -811, -813, and -825 to r-bmZPB in an ELISA and to bonnet monkey ZP in an indirect immunofluorescence assay. The epitopic domain corresponding to aa 136-147 of bmZPB was completely conserved in human ZPB. These studies will further help in designing ZP-based synthetic peptide immunogens incorporating relevant B cell epitope for fertility regulation in humans.  相似文献   

18.
Adherence epitopes of Mycoplasma genitalium adhesin.   总被引:2,自引:0,他引:2  
The adherence-mediating sites of the 153 kDa adhesin of Mycoplasma genitalium (MgPa-protein) were characterized at the amino acid sequence level using six monoclonal anti-MgPa antibodies which showed adherence-inhibiting activity. For characterization of the regions to which antibody bound, three segments of the adhesin (N-terminal region, a D1-domain located approximately in the middle of the molecule and a D2-domain located near to the C-terminus) were synthesized as overlapping octapeptides. These regions were chosen in analogy to the three domains of Mycoplasma pneumoniae that are involved in the adhesion process. Whereas two monoclonal antibodies (mAb 5B11 and mAb 6F3) bound exclusively to an epitope in the N-region, mAb 3B7 and mAb 6A2 reacted with two distinct epitopes of the D2-domain only. Binding to short synthetic peptides of different regions was analysed for mAb 3A12 (N-region and D1-region) and mAb 2B6 (N-region and D2-region). Close proximity of the N-region and the D2-region in the native MgPa-protein of M. genitalium was indicated in a competitive ELISA test, using freshly harvested M. genitalium cells. Epitope mapping and competition experiments with monoclonal anti-MgPa antibodies revealed interesting differences in the adherence-mediating sites of MgPa and the adhesin (P1-protein) of M. pneumoniae. Whereas a three-dimensional arrangement of protein loops is suggested for both native adhesins, the MgPa-protein and the P1-protein adherence-mediating epitopes are located in non-homologous regions of these two related proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Epitopes for a number of monoclonal antibodies (mAbs) binding (Ca(2+)-Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum have been defined by studying binding to fusion proteins generated from cDNA fragment libraries. Comparison of these results with those of previous studies of binding of mAbs to proteolytic fragments of the ATPase have allowed the definition of the epitopes to within approx. 100 residues and for one (mAb 1/2H7) to within 45 residues. The experiments suggest considerable exposure of the nucleotide binding domain of the ATPase on the top surface of the protein. Those mAbs that were found to inhibit steady-state ATPase activity were found to bind to epitopes in the nucleotide binding domain of the ATPase.  相似文献   

20.

Background

Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity.

Methods and Principal Findings

Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity.

Conclusions

The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号