首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为揭示鹿角杜鹃(Rhododendron latoucheae)群落灌木层植物叶功能性状及其对环境变化的响应趋势,对分布于井冈山不同海拔梯度鹿角杜鹃群落灌木层植物的叶功能性状进行了研究。结果表明,海拔梯度对灌木植物的叶功能性状有显著影响。随海拔的升高,叶片的干物质含量(LDMC)、厚度(LT)、氮含量(LNC)、磷含量(LPC)呈显著上升趋势,比叶面积(SLA)和N/P呈显著下降趋势,而叶大小(LS)呈先上升后下降的变化趋势;灌木植物叶片的LDMC与SLA、LS呈负相关,与LT、LNC、LPC呈正相关;SLA与LT、LNC呈负相关;LS与LT呈负相关;LNC与LPC呈正相关;N/P与LPC呈负相关;环境因子对灌木植物叶功能性状有重要影响,除受海拔的影响外,LPC、N/P还受坡位的影响,LS、LNC则分别还受到坡向和坡度的影响。因此,井冈山地区鹿角杜鹃群落灌木层植物通过改变叶功能性状来适应海拔和其它环境因子的变化。  相似文献   

2.

The present study was carried out to analyze the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy infestation by lianas. A total of 11 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (with or without liana). In the liana-free environment (L), evergreen trees had significantly higher leaf tissue density (LTD) and total chlorophyll (CHLt) than the deciduous species. Whereas the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed with the well-established global trait-pair relationships (leaf thickness (LT) vs. SLA, Nmass vs. LT, SLA vs. Nmass, and LDMC vs. SLA). There was a significant difference between L+ and L individuals in leaf area (LA), petiole length (PL), SLA, LDMC, and CHLt in the deciduous species. On the other hand, evergreen species showed marked differences across LT, SLA, LTD, Nmass, and chlorophyll components between L+ and L individuals of the same species. The results revealed the differential impact of liana colonization on the host trees with contrasting leaf habits. The deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environments (L), whereas evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment and further, the magnitude of such impact may vary among species of different leaf habits. The result also indicated the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species explaining the patterns of species co-existence.

  相似文献   

3.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

4.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

5.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

6.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

7.
田俊霞  魏丽萍  何念鹏  徐丽  陈智  侯继华 《生态学报》2018,38(23):8383-8391
自然界中,森林植物叶片的生长随树冠高度呈现明显的垂直分布现象;然而,有关叶片性状随着树冠垂直高度增加的变化规律仍不清楚。为了更好地揭示植物叶片对光环境变化的适应策略以及对资源的利用能力,有必要深入探讨叶片性状与冠层高度的定量关系及其内在调控机制。以中国广泛分布的温带针阔混交林为对象,选取8种主要树种为研究对象(白桦、蒙古栎、水曲柳、大青杨、色木槭、千金榆、核桃楸和红松),通过测定这些物种9个冠层高度的叶片比叶面积(SLA)、叶片干物质含量(LDMC)、叶片氮含量(N)、叶片磷含量(P)、氮磷比(N∶P)和叶绿素含量(Chl)等属性,探讨了针阔混交林叶片性状的差异以及各性状之间的相关关系,进而揭示叶片性状随树冠垂直高度的变化规律。实验结果表明:1)温带针阔混交林内优势树种的部分叶片性状在不同冠层高度之间差异显著。2)随着树冠垂直高度的增加,SLA、LDMC、N、P、N∶P和Chl呈现不同的变化趋势。其中,阔叶树种SLA随着树冠垂直高度的增加而减小;所有树种的LDMC随着树冠垂直高度的增加而增加;不同树种的N、P、N∶P和Chl随着树冠垂直高度的变化规律存在差异。3)对于温带针阔混交林冠层中,SLA与N、P、N∶P均存在显著的正相关关系,高SLA伴随着高的N、P、N∶P,表明植物通过SLA与N、P等性状的协同来提高叶片的光合作用(或对光热资源的利用效率)。本研究通过定量分析探讨温带针阔混交林叶片性状随冠层高度的变化规律,一定程度地揭示了树木对光、热和水资源竞争的适应机制,以及植物叶片的资源利用和分配策略,不仅拓展了传统性状研究的范畴,其相关研究结论也有助于树木生长模型的构建和优化。  相似文献   

8.
Background and AimsFacilitation is an important ecological process for plant community structure and functional composition. Although direct facilitation has accrued most of the evidence so far, indirect facilitation is ubiquitous in nature and it has an enormous potential to explain community structuring. In this study, we assess the effect of direct and indirect facilitation on community productivity via taxonomic and functional diversity.MethodsIn an alpine community on the Tibetan Plateau, we manipulated the presence of the shrub Dasiphora fruticosa and graminoids in a fenced meadow and a grazed meadow to quantify the effects of direct and indirect facilitation. We measured four plant traits: height, lateral spread, specific leaf area (SLA) and leaf dry matter content (LDMC) of forbs; calculated two metrics of functional diversity [range of trait and community-weighted mean (CWM) of trait]; and assessed the responses of functional diversity to shrub facilitation. We used structural equation modelling to explore how shrubs directly and indirectly drove community productivity via taxonomic diversity and functional diversity.Key ResultsWe found stronger effects from herbivore-mediated indirect facilitation than direct facilitation on productivity and taxonomic diversity, regardless of the presence of graminoids. For functional diversity, the range and CWM of height and SLA, rather than lateral spread and LDMC, generally increased due to direct and indirect facilitation. Moreover, we found that the range of traits played a primary role over taxonomic diversity and CWM of traits in terms of shrub effects on community productivity.ConclusionsOur study reveals that the mechanism of shrub direct and indirect facilitation of community productivity in this alpine community is expanding the realized niche (i.e. expanding range of traits). Our findings indicate that facilitators might increase trait dispersion in the local community, which could alleviate the effect of environmental filters on trait values in harsh environments, thereby contributing to ecosystem functioning.  相似文献   

9.
10.
松嫩草地66种草本植物叶片性状特征   总被引:3,自引:0,他引:3  
植物叶片功能性状及其相互关系越来越受到关注.以松嫩草地66种草本植物为研究对象,测量叶片干物质含量、比叶面积、叶片厚度、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量,检验性状间的相互关系,比较不同功能群(多年生根茎禾草,多年生丛生禾草,多年生杂类草,1年生或2年生草本)间性状的差异性.结果表明,叶片厚度变异系数最大,比叶面积、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量之间存在显著的正相关关系;叶片于物质含量与叶片磷含量没有显著的相关关系,与其它叶片性状呈显著的负相关关系;叶片厚度只与叶片干物质含量和比叶面积呈显著的负相关关系,与其它叶片性状不相关.叶片干物质含量、比叶面积、叶片厚度、叶片氮、磷含量在4个功能群间差异显著,叶绿素含量和类胡萝卜素含量在各个功能群间差异不显著;多年生根茎禾草和多年生丛生禾草叶片的7个性状差异不显著;多年生根茎禾草和多年生丛生禾草的叶片干物质含量高于多年生杂类草和1年生或2年生草本,其它性状小于这两个功能群.  相似文献   

11.
基于功能性状的常绿阔叶植物防火性能评价   总被引:4,自引:0,他引:4  
植物功能性状不仅便于评价植物的防火性能,也有利于筛选防火植物。本研究以宁波地区的29个常绿木本植物为对象,在测定植物比叶面积、叶干物质含量、叶片含水量、枝条干物质含量和树皮厚度5个功能性状,以及鲜叶的7个防火性能指标的基础上,通过因子分析将防火性能指标划分为抗燃性fa(包含抗火性因子f1和燃烧速度因子f22个公因子)与燃烧性fb 2个防火因子,然后利用Pearson相关和偏相关建立了5个功能性状与各个防火因子的相关性,并对29物种的防火性能进行评价。结果表明:1)比叶面积和树皮厚度与抗火性因子f1,枝条干物质含量、树皮厚度和当年生叶片含水量与燃烧速度因子f2,比叶面积与抗燃性因子fa,叶片干物质含量、比叶面积和当年生叶片含水量与燃烧性因子fb间存在显著的相关关系;2)偏相关简化植物防火性状后,比叶面积和叶干物质含量分别对抗燃性因子fa与燃烧性因子fb的指示性最好;3)分别基于功能性状和燃烧试验的物种抗燃性排序相似度为0.80。本研究证明,基于简易观测的植物功能性状可较好地反映树种的抗火性和燃烧性,可作为植物防火性能有效的评价方法。  相似文献   

12.
Question: Is the assumption of trait independence implied in Westoby's (1998) leaf‐height‐seed (LHS) ecology strategy scheme upheld in a Mediterranean grazing system dominated by annuals? Is the LHS approach applicable at the community level? Location: Northern Israel. Methods: LHS traits (specific leaf area [SLA], plant height and seed mass), and additional leaf traits (leaf dry matter content [LDMC], leaf area, and leaf content of nitrogen [LNC], carbon [LCC], and phosphorus [LPC]), were analyzed at the species and community levels. Treatments included manipulations of grazing intensity (moderate and heavy) and protection from grazing. We focused on species comprising 80% of biomass over all treatments, assuming that these species drive trait relationships and ecosystem processes. Results: At the species level, SLA and seed mass were negatively correlated, and plant height was positively correlated to LCC. SLA, seed mass, and LPC increased with protection from grazing. At the community level, redundancy analysis revealed one principal gradient of variation: SLA, correlated to grazing, versus seed mass and plant height, associated with protection from grazing. We divided community functional parameters into two groups according to grazing response: (1) plant height, seed mass, LDMC, and LCC, associated with protection from grazing, and (2) SLA, associated with grazing. Conclusions: The assumption of independence between LHS traits was not upheld at the species level in this Mediterranean grazing system. At the community level, the LHS approach captured most of the variation associated with protection from grazing, reflecting changes in dominance within the plant community.  相似文献   

13.
Plant traits associated with resource acquisition strategies (specific leaf area (SLA), leaf dry matter content (LDMC), leaf size and plant height) change along gradients of soil properties, being the most conservative in a resource-poor environment and the most dynamic in a resource-rich environment. Clonal attributes also vary along soil and other environmental conditions. We hypothesized that in alpine communities in the Scandian Mts. (1) the average composition of traits in a plant assemblage in terms of i) the predominance of different clonal growth organ types, ii) the number of buds in the bud bank, iii) the distribution of the bud-bank (above- and below ground), iv) the distance of lateral spread and v) the longevity of plant – offspring connections would change along a gradient of soil properties and (2) that this variation would be in correspondence with that of traits associated with resource acquisition strategies (SLA, LDMC, leaf size and plant height). Analysis of clonal and bud bank traits for species of alpine communities supported our first hypothesis: with decreasing soil quality the most common clonal growth organs were rhizomes, and there was a predominance of perennial bud banks located at the soil surface or below-ground, low rates of lateral spread and long persistence of plant – offspring connections. Our second hypothesis was partly supported. As predicted, at the level of the plant assemblage, these clonal and bud bank traits were positively associated with LDMC, and negatively with leaf size and plant height. These observations reinforce the hypotheses about trade-offs between acquisition and retention strategies in plants. The only result that was in contradiction with our expectations was the lack of correspondence between clonal and bud bank traits and SLA that could be attributed to errors associated to the measurement of the area of narrow and small leaves or to the dependence of the SLA index on species-specific morphological attributes.  相似文献   

14.
厘清叶片功能性状的变异及性状间的权衡关系,对揭示植物对环境变化的响应及适应策略具有重要意义。以中亚热带柯(Lithocarpus glaber)-青冈(Cyclobalanopsis glauca)常绿阔叶林为对象,测量了1 hm2固定监测样地内6个优势树种的叶面积(LA)、比叶面积(SLA)、干物质含量(LDMC)、叶片厚度(LT)、叶片碳(LC)、叶片氮(LN)、叶片磷(LP)含量和叶片碳氮比(LCLN)8个功能性状,采用多重比较、主成分分析(PCA)法分析了群落叶片功能性状的生活型、种内和种间变异及性状间关系。结果表明:(1)群落内叶片功能性状种内、种间差异显著,变异中等(CV: 0.02-0.59),其结构性状的可塑性较化学性状保守,变异格局符合"性状空间变异分割假说";针叶树种的LA、SLA显著低于阔叶树种,常绿树种的LC和LDMC最小,而落叶树种的SLA、LNLP最大以及LTLCLN最小。(2)群落叶片功能性状变异主要来源于生活型和种间变异,种内变异亦有显著贡献;生活型对多数性状的贡献率较大,其对LDMC、LCLN的贡献分别高达93.11%和91.76%;种间变异(LDMC除外)对结构性状的贡献率均高于化学性状;种内变异对LP的贡献率(23.66%)较种间变异高。(3)叶片性状之间多表现出显著相关关系,针叶树和阔叶树在PCA排序图中聚集于不同区域,叶经济型谱在柯-青冈群落中具有适用性。不同树种通过叶片结构、化学性状之间的权衡策略来适应环境变化,从而实现群落物种共存。结果可为理解森林群落物种的环境适应策略、预测群落动态变化和制定植被恢复措施提供科学依据。  相似文献   

15.
Intraspecific leaf trait variations are becoming a topic of interest for many ecologists because individual-based traits are essentially the drivers of variations at the community level. Six coexisting major tree species in an old-growth temperate forest, Northeast China (i.e., Abies nephrolepis, Pinus koraiensis, Acer mono, Fraxinus mandshurica, Tilia amurensis, and Ulmus laciniata) were sampled, and three habitat types (i.e., Hab I: high soil organic carbon with a moderate slope; Hab II: low soil organic carbon with a gentle slope; and Hab III: low soil organic carbon with a strong slope) were used in the plot. We performed a two-way ANOVA to compare the specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf carbon content (LCC) between saplings (1 < DBH ≤ 5 cm) and adults (DBH ≥ 10 cm) and between habitat types within species. We simultaneously evaluated the effects of life stage, plant functional type, and habitat type on the six leaf traits. Our results showed that life stage and habitat type had varied influences on the leaf traits of the six species. Life stage was an important determinant for all leaf traits. Plant functional type was included in the best models for SLA, LNC, and LCC. Habitat type had a greater influence on LDMC than SLA. Meanwhile, habitat type had a greater influence on LNC and LPC than LCC. The correlation between leaf traits with local environmental factors varied across different plant functional types and life stages. We suggest conducting individual-based analyses of leaf trait variations according to plant functional type and life stage to understand the plant life strategies along an environmental gradient may improve understanding of the forest dynamics in an old-growth temperate forest.  相似文献   

16.
Nine leaf traits (area, fresh weight, dry weight, volume, density, thickness, specific leaf area (SLA), dry matter content (LDMC), leaf nitrogen content (LNC)) from ten plant species at eight sites in southern mediterranean France were investigated in order to assess their variability along a climatic gradient and their ranking congruency power. After examination of trait correlation patterns, we reduced the nine initial leaf traits to four traits, representative of three correlation groups: allometric traits (dry weight), functional traits (SLA and dry matter percentage) and Leaf Thickness. We analysed the variability of these four leaf traits at species and site level. We observed that between species variation (between 64.5 for SLA and 91% for LDMC) is higher than within species variation. Allowing a good congruency of species ranking assessed by spearman rank correlation () and a good reallocation of individuals to species by discriminant analysis. A site level variability (between 0.7% for Dry weight and 6.9% for SLA) was identified and environmental parameters (altitude, temperature, precipitation, nitrogen, pH) were considered as probable control factors. We found significant correlation between SLA, LDMC and the average minimum temperature (respectively r=0.87 and r=-0,9) and no correlation for the other traits or environmental parameters. Furthermore, we conclude that two leaf traits appear to be central in describing species: specific leaf area (SLA), percentage of dry matter (LDMC. While, SLA and LDMC are strongly correlated, LDMC appears to be less variable than SLA. According to our results the Dry Matter Content (or its reversal Leaf Water Content) appears the best leaf trait to be quantified for plant functional screening. Leaf thickness appeared to be rather uncorrelated with other leaf traits and show no environmental contingency; its variability could not have been explained in this study. Further studies should focus on this trait. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Interannual climate variation alters functional diversity through intraspecific trait variability and species turnover. We examined these diversity elements in three types of grasslands in northern China, including two temperate steppes and an alpine meadow. We evaluated the differences in community‐weighted means (CWM) of plant traits and functional dispersion (FDis) between 2 years with contrasting aridity in the growing season. Four traits were measured: specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen concentration (LNC), and the maximum plant height (H). CWM for SLA of the alpine meadow increased in the dry year while that of the temperate steppe in Qinghai showed opposing trends. CWM of LDMC in two temperate steppes became higher and CWM of LNC in all grasslands became lower in the dry year. Compared with the wet year, FDis of LDMC in the alpine meadow and FDis of LNC in the temperate steppe in Qinghai decreased in the dry year. FDis of H was higher in the dry year for two temperate steppes. Only in the temperate steppe in Qinghai did the multi‐FDis of all traits experience a significant increase in the dry year. Most of the changes in CWM and FDis between 2 years were explained by intraspecific trait variation rather than shifts in species composition. This study highlights that temporal intraspecific trait variation contributes to functional responses to environmental changes. Our results also suggest it would be necessary to consider habitat types when modeling ecosystem responses to climate changes, as different grasslands showed different response patterns.  相似文献   

18.

Background and Aims

Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC?

Methods

SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described.

Key Results

Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility.

Conclusions

Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.  相似文献   

19.
油松叶功能性状分布特征及其控制因素   总被引:2,自引:0,他引:2  
张凯  侯继华  何念鹏 《生态学报》2017,37(3):736-749
植物叶功能性状能够直接或间接反应植物对环境的适应策略,这种适应策略会间接影响植物的生长、繁殖和生存。目前已有大量关于植物叶功能性状与环境间关系的研究,但这些研究多使用性状平均值代替物种,忽略了性状的种内变化。油松是我国重要的造林树种,对我国陆地生态系统起着重要的作用,研究其叶功能性状与环境的关系有助于更好的的理解种内功能性状与环境间的关系。于2014年6—9月对辽宁、内蒙、北京、山西、陕西、宁夏、青海等地天然油松进行采样并对其重要的8个叶功能性状的分布特征及主控环境因子进行了研究,结果表明:1)油松各叶性状值存在较大的种内变异系数(4.82%—25.85%),除1年生叶碳含量(LCC)油松各叶功能性状值在不同研究地点间差异显著(P0.05);2)油松叶长(LL)、叶厚(LT)、比叶面积(SLA)、气孔密度(SD)、叶氮含量(LNC)存在较弱的经度格局,LT、SD、LNC存在较弱的纬度格局(0.05R~20.3),水热条件的变化以及较大的局部效应是造成这种格局的可能原因;3)控制油松各叶性状分布的主要环境因子各不相同,其中LL主要受到年平均降水量和海拔高度的影响;LT主要受到年均温和土壤体积含水率的影响;SLA主要受到年平均降水量和土壤氮含量的影响;叶干物质含量(LDMC)主要受到水因子的影响;SD主要受到海拔高度的影响;LNC主要受到海拔和水因子的影响;叶磷含量(LPC)主要受到土壤磷含量的影响。  相似文献   

20.
It is widely assumed that higher levels of intraspecific variability in one or more traits should allow species to persist under a wider range of environmental conditions. However, few studies have examined whether species that exhibit high variability are found in a wider range of environmental conditions, and whether variability increases the ability of a species to adapt to prevailing ecological gradients. We used four plant functional traits, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N) and maximum plant height in 49 species across a strong environmental gradient to answer three questions: 1) is there evidence for ‘high‐variability’ species (that is, species which show high variability in multiple traits, simultaneously)? 2) are species with more variable traits present across a wider range of environmental conditions than less variable species? And 3) whether more variable species show better trait–environment matching to the prevailing abiotic (soil moisture) gradient at the site? We found little evidence for a ‘high‐variability’ species. Variability was correlated for two leaf traits, SLA and LDMC, while variability in leaf traits and plant height were not correlated. We found little evidence that more variable species were present in more diverse conditions: only variation in SLA was correlated with a wider ecological niche breadth. For plant traits along the soil‐moisture gradient, higher variability led to better trait–environment matching in half of measured traits. Overall, we found little support for the existence of ‘high‐variability’ species, but that variability in SLA is correlated with a wider ecological breadth. We also found evidence that variation in traits can improve trait–environment matching, a relationship which may facilitate our understanding ecological breadth along prevailing gradients, and community assembly on the basis of traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号