首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Aim Comparisons among islands offer an opportunity to study the effects of biotic and abiotic factors on small, replicated biological communities. Smaller population sizes on islands accelerate some ecological processes, which may decrease the time needed for perturbations to affect community composition. We surveyed ants on 18 small tropical islands to determine the effects of island size, isolation from the mainland, and habitat disturbance on ant community composition. Location Thousand Islands Archipelago (Indonesian name: Kepulauan Seribu) off Jakarta, West Java, Indonesia. Methods Ants were sampled from the soil surface, leaf litter and vegetation in all habitat types on each island. Island size, isolation from the mainland, and land‐use patterns were quantified using GIS software. The presence of settlements and of boat docks were used as indicators of anthropogenic disturbance. The richness of ant communities and non‐tramp ant species on each island were analysed in relation to the islands’ physical characteristics and indicators of human disturbance. Results Forty‐eight ant species from 5 subfamilies and 28 genera were recorded from the archipelago, and approximately 20% of the ant species were well‐known human‐commensal ‘tramp’ species. Islands with boat docks or human settlements had significantly more tramp species than did islands lacking these indicators of anthropogenic disturbance, and the diversity of non‐tramp species decreased with habitat disturbance. Main conclusions Human disturbance on islands in the Thousand Islands Archipelago promotes the introduction and/or establishment of tramp species. Tramp species affect the composition of insular ant communities, and expected biogeographical patterns of ant richness are masked. The island with the greatest estimated species richness and the greatest number of unique ant species, Rambut Island, is a forested bird sanctuary, highlighting the importance of protected areas in preserving the diversity of species‐rich invertebrate faunas.  相似文献   

2.
Aim We analyse modern patterns of richness, presence and extinction of birds of prey (Accipitriforms and Falconiforms) in the Mediterranean and Macaronesian islands, using an integrated approach involving both biogeographical and human‐induced factors. Location Forty‐three islands grouped into nine Mediterranean and Macaronesian archipelagos. Methods Information about 25 species breeding during the past century and their fate (permanence or extinction) was compiled from the literature and regional reports. Jaccard's similarity index and cluster analyses were applied to define island assemblages. In order to detect the factors driving richness, presence and extinction, generalized linear models (GLM) were applied to 32 explanatory variables, evaluating location, physiography, isolation of island, taxonomic affinities and life‐history patterns of the raptor species. Results Islands belonging to the same archipelago clustered when raptor assemblages were compared, revealing a marked biogeographical signal. Species richness was influenced by island area and accessibility from the continent (explained deviance of 51% in the GLM). Models of the probability of presence (explained deviance of 32%) revealed positive influences of migratory patterns (maximum for partial migrants), size of distribution areas and proximity to main migration routes. The model for probability of extinction explained only 8% of the deviance. It revealed that populations living on islands with a high density of human population were more prone to disappear. Also, raptors depending on human resources had more risk of extinction. Main conclusions Basic predictions of island biogeography can explain current patterns of raptor richness in the study area despite millennia of intense humanization processes. Colonization success appears to depend on life‐history traits linked to migratory and dispersal strategies, whereas body‐size constraints are not influential. Additionally, our results reveal the importance of species‐based analyses in studies of island biogeography.  相似文献   

3.
Aim The aim of this study is to explore the interrelationships between island area, species number and habitat diversity in two archipelago areas. Location The study areas, Brunskär and Getskär, are located in an archipelago in south‐western Finland. Methods The study areas, 82 islands in Brunskär and 78 in Getskär, were classified into nine habitat types based on land cover. In the Brunskär area, the flora (351 species) was surveyed separately for each individual habitat on the islands. In the Getskär area, the flora (302 species) was surveyed on a whole‐island basis. We used standard techniques to analyse the species–area relationship on a whole‐island and a habitat level. We also tested our data for the small island effect (SIE) using breakpoint and path analysis models. Results Species richness was significantly associated with both island area and habitat diversity. Vegetated area in particular, defined as island area with the rock habitat subtracted, proved to be a strong predictor of species richness. Species number had a greater association with island area multiplied by the number of habitats than with island area or habitat number separately. The tests for a SIE in the species–area relationship showed the existence of a SIE in one of the island groups. No SIE could be detected for the species–vegetated area relationship in either of the island groups. The strength of the species–area relationship differed considerably between the habitats. Main conclusions The general principles of island biogeography apply well to the 160 islands in this study. Vascular plant diversity for small islands is strongly influenced by physiographic factors. For the small islands with thin and varying soil cover, vegetated area was the most powerful predictor of species richness. The species–area curves of various habitats showed large variations, suggesting that the measurement of habitat areas and establishment of habitat‐based species lists are needed to better understand species richness on islands. We found some evidence of a SIE, but it is debatable whether this is a ‘true’ SIE or a soil cover/habitat characteristics feature.  相似文献   

4.
Aim To assess how ant species richness and structure of ant communities are influenced by island age (disturbance history) in a dynamic archipelago. Location Cabra Corral dam, Salta Province, north‐west Argentina (25°08′ S, 65°20′ W). Methods Ant species richness on remaining fragments (islands) of a flooded forest was determined, as well as island area, isolation and age. Simple linear regressions were performed to assess relationships between ant species richness and those insular variables. Furthermore, a stepwise multiple linear regression analysis was conducted in order to determine the relative influence of each insular variable on ant species richness. Islands were categorized in two age classes (old and young) and co‐occurrence analyses were applied within each class to evaluate changes in community structure because of interspecific competition. Results Simple regression analyses indicated a moderate, positive effect of island area on ant species richness. Weak, marginally non‐significant relationships were found between ant species richness and both island isolation and island age, showing the tendency for there to be a decrease in ant species richness with island isolation and that ant species richness might be higher in old islands. The multiple regression analysis indicated that island isolation and age had no significant effects on the number of ant species, island area being the only independent variable retained in the analysis. On the contrary, whereas a random pattern of species co‐occurrence was found on young islands, ant communities in old islands showed a significantly negative pattern of species co‐occurrence, suggesting that the effect of competition on community structure was stronger on older islands than on younger islands. Main conclusions Island area was the most important variable explaining ant species richness on the islands of Cabra Corral dam. However, both island isolation and island age (or disturbance history) might also contribute to shape the observed community patterns. The present study also shows that island age significantly affects the strength with which interspecific interactions structure ant communities on islands.  相似文献   

5.
Species richness of six pasture arthropod assemblages (total arthropod species, total herbivore species, sucking and chewing herbivores, total predatory species and spiders) were regressed against several geographical variables (area, distance from the nearest mainland, maximum elevation and geological age of the islands) of three Azorean islands (S. Maria, Terceira and Pico). The species were sampled by the fixed-quadrat size sampling method and the results obtained are consistent with the geological age hypothesis, i.e. the species richness of the six indigenous arthropod assemblages increases with the geological age of the islands, both at local and regional scales. Higher values of indigenous and endemic species richness were consistendy found on the older island (S. Maria), and the lowest values on the most recent island (Pico). Moreover, when considering the age of Faial (an older island probably once connected with Pico) as a estimate of the age of Pico, correlations between species richness and island age were improved, thereby strengthening the relationship. The older island (S. Maria) has more specialized herbivores and a greater proportion of herbivores in relation to predatory arthropods. Ecological and biogeographical studies in the Azores should take into account the effects of the time each island has been available for colonization and evolution.  相似文献   

6.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

7.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

8.
Aim To evaluate the role of island isolation in explaining the distribution of vascular plant species in a dense freshwater archipelago, specifically comparing conventional measures of island isolation with landscape measures of island isolation. Location Data were collected from 35 islands within Massasauga Provincial Park on the eastern shores of the Georgian Bay, Ontario, Canada. Methods Sampled islands were located using stratified random selection based on location and size variation. The number of species was recorded along stratified random transects. Island isolation variables included distance to the mainland, distance to the nearest island, largest gap in a stepping‐stone sequence, distance to the closest upwind point of land, and a landscape measure of island isolation. The landscape measure of isolation was quantified as the percentage of the land area within 100, 250, 500, 1000, 1500 and 2000 m of each island’s perimeter. The isolation variables were calculated within a geographical information system (GIS). Dependent variables in the regression analyses included species richness, the logarithm of species richness and residuals of the species–area relationship. Independent variables included island isolation variables and their logarithmic transformations. Results Isolation plays a role, albeit small, in explaining species richness in the study area. In the regression analyses, the landscape measure of isolation provided a better fit than conventional measures of island isolation. Islands with less land than water within a 250‐m buffer were more effectively isolated and had fewer species present than islands surrounded by a greater proportion of water. Main conclusions Consistent with the species–isolation relationship, fewer species were present on more isolated islands within the Massasauga study area, as elucidated using a series of island buffers in a GIS. Applying a landscape measure of isolation to similar dense, freshwater archipelagos may elucidate species–isolation patterns not evident through conventional, straight‐line distance measurements of island isolation. The low value of the regression coefficients as well as the isolation history and high density of the Massasauga islands suggests caution in extending the results, especially to dissimilar archipelagos.  相似文献   

9.
Aim To test whether species richness of Sphagnum mosses on islands in a land uplift archipelago is related to island age, area or connectivity, and whether the frequency of different species can be predicted by their life history and autecology. Location The northern Stockholm archipelago in the Baltic Sea, east‐central Sweden, with a current land uplift rate of 4.4 mm year?1. Methods We sampled 17 islands differing in area (0.55–55 ha), height (3.6–18 m, representing c. 800–4000 years of age) and distance from mainland (1.6–41 km). For each Sphagnum patch we measured area, height above sea level, horizontal distance from the shore and shading from vascular plants. Factors affecting island species richness, species frequency and habitats on the islands were tested by stepwise regressions. Species frequency was tested on nine life history and autecological variables, including estimated abundance and spore output on the mainland, habitat preference and distribution. Results We recorded 500 patches of 19 Sphagnum species, distributed in 83 rock pools on 14 islands. Island species richness correlated positively with island area and with degree of shelter by surrounding islands, while distance from the mainland, connectivity, height or age did not add to the model. Species frequency (number of colonized islands and rock pools) was mainly predicted by spore output on the mainland and by habitat preference (swamp forest species were more frequent than others), while spore size, for example, did not add to the model. Species differed in mean height above and horizontal distance from the shore, area of occupied rock pools and in the degree of shading of patches. The mean horizontal distance from the shore and the area of occupied rock pools correlated positively with the normal growth position above the water table among species. Spore capsules were found in only 2% of patches, mostly in the bisexual Sphagnum fimbriatum. Main conclusions The presence of Sphagnum in the Stockholm archipelago seems to be governed by regional spore production and habitat demands. Sphagnum does not appear to be dispersal limited at distances up to 40 km and time spans of centuries. Species with a high regional spore output have had a higher colonization rate, which, together with the rarity of spore capsules on the islands, indicate the mainland as a source for colonization rather than dispersal among islands. Swamp forest species seem more tolerant to the island conditions (summer droughts and some salt spray) than open mire species. The different distances from the sea occupied by the species indicate a slow, continuous succession and species replacement towards the island interior as islands are being uplifted and thus expand in area. This partly explains why larger islands harbour more species. Our results thus support some of the island biogeographical theories related to the species–area relationship.  相似文献   

10.
Aims Major patterns and determinants of the species richness of Sphingidae in the Malesian archipelago were investigated, including a distinction of richness patterns between subfamilies and range‐size classes. Location Southeast Asia, Malesia. Methods Using a compilation of specimen‐label data bases, geographic information system (GIS)‐supported estimates of distributional ranges for all Sphingidae species of Southeast Asia were used to assess the species richness of islands. Range maps for all species and checklists for 114 islands can be found at http://www.sphingidae‐sea.biozentrum.uni‐wuerzburg.de . Potential determinants of the species richness of islands were tested with general linear models. Results The estimated species richness of islands in the region is determined by biogeographical association, seasonality, availability of rain forest and island size. Species–area relationships are linear on a semi‐logarithmic representation, but not on a double‐logarithmic scale. Species richness of all sphingid subfamilies is influenced by biogeography. The presence of large rain‐forest areas affects mainly Smerinthinae, whereas distance from continental Asia is conspicuously irrelevant for this group. Widespread rather than geographically restricted species shape the overall distribution patterns of species richness. The altitudinal range of islands does not significantly affect species‐richness patterns, but its potential effects on geographically restricted species are discussed. Main conclusions As well as being affected by climatic and vegetation parameters, sphingid species richness is strongly influenced by a historical, directional dispersal process from continental Southeast Asia to the Pacific islands. This process did not apply equally to species of different taxonomic groups or range sizes. Widespread species decline in species richness towards the south‐east, whereas geographically restricted species exhibit an inverse pattern of species richness, probably because speciation becomes more important in this group within the more isolated island groups.  相似文献   

11.
Native vegetation is frequently replaced by alien plants on isolated oceanic islands. The effects of such replacements by invasive plants on the diversity and temporal dynamics of island-endemic insects remain unclear. We examined flying insect communities using Malaise traps on the small island of Nishi-jima in the oceanic Ogasawara Archipelago in the northwestern Pacific. On the island, an alien tree, Casuarina equisetifolia, has become dominant, occupying 57.3?% of the vegetation area. The species richness, composition, and abundance of pollinators (bees), predators (wasps), and wood-boring beetles (cerambycids, mordellids, and elaterids) were compared in each summer season of 4?years among three vegetation types: C. equisetifolia forest, natural forest, and grassland. In the traps, 82.3?% of species captured were endemic to the archipelago. The grassland harbored the highest species richness of native bees and wasps, whereas the natural forest had the highest species richness of native wood-boring beetles. The C. equisetifolia forest had the poorest species richness for most insect groups. Principal response curves indicated that differences in species composition among the three vegetation types were consistent through time for all insect groups. Most insect species were more abundant in natural forest or grassland than in C. equisetifolia forest. Standard deviations in both the numbers of individuals and species estimated under a Bayesian framework suggested that annual fluctuations of abundance and species density were similar among vegetation types (except for elaterid abundance). Therefore, replacement by C. equisetifolia has likely altered insect species composition but has not necessarily dramatically affected the temporal dynamics of insect assemblages on the island.  相似文献   

12.
A qualitative survey of the terrestrial bird community (sixty-five species) and a quantitative analysis of the five-diurnal raptor assemblage were earned out on 33 islands of the oceanic Andaman archipelago in the Bay of Bengal Among seven geographical parameters, island area was the main determinant of species richness for both the whole bird community and each category of species associated with four habitat types Species richness decreased most markedly with island size in the smallest islands and in open habitat species The rarest forest species were the most extinction prone with decreasing island size Specific habitat selection was the most prominent ecological correlate of inter island species distribution Observed species distribution patterns did not fit the random species placement or equprobable occurrence hypotheses Raptors were primarily forest species, two of them restricted to forest interior, two more tolerant of fragmentation and one naturally associated with mangroves Unexpectedly, the two rarest and most area sensitive raptors were the two smallest species with a strong active flight, whereas the most abundant and widespread species was the most forest interior and endemic taxon Both raptor species richness, species frequency of occurrence and abundance indices decreased with island area, which was consistently the most significant determinant of every species' occurrence and abundance There was a significant correlation between abundance or frequency of occurrence of every raptor species and the proportion of their preferred habitat type No relationship was found between habitat niche breadth or local abundance of any species and their distribution range among islands The hypothesis of random composition of species assemblages on islands was not supported because of species specific habitat selection Any evidence of interspecific competitive exclusion was limited to the striking habitat segregation of the two congeneric serpent eagles A metapopulation structure was suggested by small population distribution patterns, observed sea crossing and the circumstances of an apparent extinction  相似文献   

13.
Temperate Australia has a speciose highly endemic algal flora. This study explored the influence of geographical isolation between islands, depth and exposure to ocean swells on the diversity of macroalgae in the Recherche Archipelago (Western Australia). Macroalgae were harvested (0.25‐m2 quadrats) from sites at two exposures (sheltered and exposed to wave energy), three depths (<10, 10–20, and 21–28 m), and two island groups (three islands within Esperance Bay and three islands outside the bay). A total of 220 species were collected. Species richness and biomass were significantly different at the smallest spatial scale (0.25 m2), and density of overstory species decreased with depth. Results from analysis of similarity tests suggested that macroalgal assemblages differed with depth, exposure and to a lesser extent with island group. Assemblage differences were often associated with particular overstory or understory taxa and not the entire assemblage composition. Average species richness·0.25 m?2 ranged from 13 to 29 species, typically with a few species contributing more than 50% of average biomass. Species richness was maintained by species turnover at the 0.25‐m2 spatial scale. Our results suggest that richness in temperate Australia is maintained by turnover of broadly distributed species. More dominant species in assemblages were associated with differences in depth and exposure to ocean swells. Our findings support the hypothesis of a geographical transition of dominant species from kelp‐dominated in the west to a fucalean‐dominated assemblage in the Recherche Archipelago and east of the Great Australian Bight.  相似文献   

14.
We quantified patterns of species richness and species composition of frogs and reptiles (lizards and snakes) among three habitats (continuous forest, forest islands, and a seasonally flooded savannah) and between forest island size and isolation classes in a floristic transition zone in northeastern Santa Cruz Department, Bolivia. Species richness was similar across macrohabitats, as was faunal composition of forested habitats, although savannah harbored a distinct herpetofauna. On forest islands, richness and composition of forest frogs was largely related to isolation, whereas reptiles were affected by both isolation and habitat. The observation that isolation rather than area was the primary driver of distribution patterns on forest islands stands in contrast to many studies, and may be a function of (1) the greater range in forest island isolation values compared to area or (2) the long history of isolation in this landscape.  相似文献   

15.
Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction‐immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles.  相似文献   

16.
Mediterranean islands have complex reptile assemblages, but little is known about the factors that determine their organization. In this study, the structure of assemblages of Squamata was evaluated based on their species richness and two measures of phylogenetic diversity (variability and clustering). I evaluated the composition of the assemblages comparing distinct biogeographic subregions within the Mediterranean: Adriatic, Aegean, Balearic, Corsica–Sardinia, Crete, Gulf of Gabés, Ionian Sea, Ligurian Sea, Malta, Sicily, and Tyrrhenian Sea. The effect of island environments and geographical isolation on the diversity metrics was assessed using generalized linear models. The analyses indicated that species richness was mostly influenced by island area and geographical isolation. Assemblages on smaller islands were poorer in species and phylogenetically dispersed, possibly as an effect of interspecific competition. The species composition of the assemblages was determined by similar environmental drivers within the biogeographic subregions, including island area, island elevation, geographical isolation, and aridity. In several subregions, significant patterns of phylogenetic attraction were found in species co‐occurrences, caused by the limits imposed by the island size on large predatory species.  相似文献   

17.
18.
Aim The influence of physiographic and historical factors on species richness of native and non‐native vascular plants on 22 coastal islands was examined. Location Islands off the coast of north‐eastern USA and south‐eastern Canada between 41° and 45° N latitude were studied. Island size ranges from 3 to 26,668 ha. All islands were deglaciated between 15,000 and 11,000 yr bp ; all but the four New Brunswick islands were attached to the mainland until rising sea level isolated them between 14,000 and 3800 yr bp . Methods Island species richness was determined from floras compiled or revised since 1969. Simple and multiple regression and rank correlation analysis were employed to assess the relative influence of independent variables on species richness. Potential predictors included island area, latitude, elevation, distance from the mainland, distance from the nearest larger island, number of soil types, years since isolation, years since deglaciation, and human population density. Results Native vascular plant species richness for the 22 islands in this study is influenced most strongly by island area, latitude, and distance from the nearest larger island; richness increases with island area, but decreases with latitude and distance from the nearest larger island as hypothesized. That a similar model employing distance from the mainland does not meet the critical value of P confirms the importance of the stepping‐stone effect. Habitat diversity as measured by number of soil types is also an important predictor of native plant species richness, but at least half of its influence can be attributed to island area, with which it is correlated. Two historical factors, years since deglaciation and years since isolation, also appear to be highly correlated with native species richness, but their influence cannot be separated from that of latitude for the present sample size. Non‐native vascular plant species richness is influenced primarily by island area and present‐day human population density, although human population density may be a surrogate for the cumulative effect of several centuries of anthropogenic impacts related to agriculture, hunting, fishing, whaling, tourism, and residential development. Very high densities of ground‐nesting pelagic birds may account for the high percentage of non‐native species on several small northern islands. Main conclusions Many of the principles of island biogeography that have been applied to oceanic islands apply equally to the 22 islands in this study. Native vascular plant species richness for these islands is strongly influenced by physiographic factors. Influence of two historical factors, years since deglaciation and years since isolation, cannot be assessed with the present sample size. Non‐native vascular plant species richness is influenced by island area as well as by human population density; human population density may be a surrogate for other anthropogenic impacts.  相似文献   

19.
Anthropogenically driven changes in bird communities on oceanic islands exemplify the biotic upheaval experienced by island floras and faunas. While the influence of invasions and extinctions on species richness and beta‐diversity of island bird assemblages has been explored, little is known about the impact of these invasions and extinctions on phylogenetic diversity. Here we quantify phylogenetic diversity of island bird assemblages resulting from extinctions alone, invasions alone, and the combination of extinctions and invasions in the historic time period (1500 CE to the current), and compare it to the expected phylogenetic diversity that would result if these processes involved randomly selected island bird species. We assessed phylogenetic diversity and structure at the scale of the island (n = 152), the archipelago containing the islands (n = 22), and the four oceans containing the archipelagos using three measures. We found that extinction, invasion, and the combination of invasion and extinction generally resulted in lower phylogenetic diversity than expected, regardless of the spatial scale examined. We conclude that extinction and invasion of birds on islands are non‐random with respect to phylogeny and that these processes generally leave bird assemblages with lower phylogenetic diversity than we would expect under random invasion or extinction.  相似文献   

20.
L. Yiming  J. Niemelä  L. Dianmo 《Oecologia》1998,113(4):557-564
Because of their poor dispersal ability, amphibians are well suited for testing the selective extinction theory on islands. Amphibian fauna in the Zhoushan archipelago, China, exhibit a high level of nestedness (C = 0.893), and the species number is lower on islands than on similar sized areas on the mainland. No correlation was found between island-specific species richness and the nearest distance from a larger island, distance from the mainland or density of human population. These results suggest that no amphibian colonisation has occurred in the archipelago since island isolation 7000–9000 years ago. Furthermore, the results imply that selective extinction contributes to the nestedness of amphibians in the Zhoushan archipelago. The incidence of a species on the islands is significantly correlated with log area of the smallest island occupied by the species and the number of provinces on the Chinese mainland in which the species occur. However, there is no correlation with average body length of adults and island occurrence. It is concluded that (1) the area of the smallest island occupied by a species is a good estimate of the minimum area for a viable population of the species and a good predictor of species incidence on islands, (2) species with a restricted distribution range are more vulnerable to extinction from islands than those with a wide distribution range and (3) the effect of body size on occurrence on the islands is uncertain, and may be specific to the archipelago and taxa studied. The observed nestedness of amphibian assemblages has two implications for conservation: (1) not only can all the species found in several small reserves be found on a large reserve of the same total size, but additional species can be found on the single large reserve; (2) for a reserve to maintain viable populations of all species in a region it should be at least as large as the smallest island occupied by the most vulnerable species. Received: 16 December 1996 / Accepted: 22 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号