首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.

Background

Current Ebola virus (EBOV) detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV) proteins. In particular, several monoclonal antibodies (mAbs) have been described that bind the capsid glycoprotein (GP) of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.

Methods/Principal Findings

We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude) and they are easily and economically produced in bacterial cultures.

Conclusion/Significance

Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.  相似文献   

2.
To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.Enveloped viruses enter cells by a variety of different pathways. Productive internalization of enveloped viruses with targeted cells is mediated through interactions of the viral glycoprotein(s) (GPs) with moieties on the surface of the cell. In general, enveloped viral entry occurs through viral adherence to the cell surface, interaction with a specific plasma membrane-associated receptor that results in a series of GP conformational changes leading to fusion of viral and cellular membranes, and delivery of the viral core particle into the cytoplasm. Fusion of the two membranes can occur at the plasma membrane or by uptake of the intact virions into endosomes with subsequent membrane fusion between the viral membrane and the lipid bilayer of the endocytic vesicle. Human immunodeficiency virus (HIV) is an example of a virus that fuses directly to the plasma membrane (5), whereas influenza virus must be internalized into acidified vesicles where the appropriate GP conformational changes can occur, mediating membrane fusion (21). Most enveloped viruses that enter through vesicles utilize a low-pH environment to mediate the necessary conformational changes in GP that induce membrane fusion (37).Ebola virus (EBOV) and vesicular stomatitis virus (VSV) are enveloped, single-stranded, negative-sense RNA viruses belonging to the families Filoviridae and Rhabdoviridae, respectively. Though they share similarity in genome organization and a broad tropism for a variety of cell types, they differ greatly in their pathogenicities (29, 39). EBOV causes severe hemorrhagic fever that is frequently fatal, whereas VSV infects mainly livestock, generating fluid-filled vesicles on mucosal surfaces.Interestingly, the receptor(s) that mediate entry of these two viruses have yet to be definitively identified. C-type lectins such as DC-SIGN and DC-SIGNR are thought to serve as adherence factors for EBOV (26). Other plasma membrane-associated proteins have been implicated in EBOV uptake including folate receptor alpha and the tyrosine kinase receptor Axl (6, 35, 36, 38), but the physical interaction of EBOV GP and these proteins has not been demonstrated, and cells that do not express these proteins are permissive for EBOV GP-mediated virion uptake. VSV was shown to bind ubiquitously to cells via phosphatidylserine (PS) (31). However, a more recent study reports that PS is not a receptor for VSV as no correlation was found between cell surface PS levels and VSV infection, and annexin V, which binds specifically to PS, did not inhibit infection of VSV (9).Both viruses enter cells through a low-pH-dependent, endocytosis-mediated process. A large body of evidence indicates that VSV is internalized via clathrin-coated pits, with a reduction in pH mediating reversible alterations in the GP leading to membrane fusion (40). EBOV may also enter cells by clathrin-mediated endocytosis (30), but lipid raft-associated, caveolin-mediated endocytosis has also been proposed as a mechanism of EBOV uptake (11). Low-pH events lead to cathepsin-dependent cleavage of EBOV GP that is required for productive uptake of the virus (8, 19, 33). Other low-pH-dependent events have been postulated to be required as well (33).To identify genes whose expression correlated with EBOV GP-dependent transduction, we compared the relative transduction efficiency of EBOV GP pseudotyped virions on a panel of human tumor cell lines with gene expression data from cDNA microarrays developed for the same panel of cell lines (20). The gene array data are available from the Developmental Therapeutics Program at the National Cancer Institute (NCI) website (http://dtp.nci.nih.gov/). A significant correlation was observed between expression of RhoC, a member of the small GTP-binding Rho GTPase family, and permissivity for EBOV transduction. Surprisingly, a significant correlation was also observed between VSV glycoprotein (VSVG)-mediated transduction and RhoC expression. In this study, we report that modulation of RhoC expression by transfection of expression plasmids or treatment with an inhibitor alters transduction by virions pseudotyped with either EBOV GP or VSVG and fusion of EBOV virus-like particles (VLPs). RhoC expression also significantly enhanced wild-type VSV infection. We also examine the differential effect each Rho GTPase has on nonspecific endocytotic uptake of exogenous material and on organization of the actin filament. Our findings suggest that RhoC enhances entry of EBOV GP and VSVG pseudovirions through modulation of fluid-phase endocytosis.  相似文献   

3.
Previously, we have determined the nucleotide and amino acid sequences of the variable domains of three mouse monoclonal antibodies specific to the individual epitopes of the Ebola virus glycoprotein: GPE118 (IgG), GPE325 (IgM) and GPE534 (IgG) [1]. In the present paper, chimeric Fab fragments of Fab118, Fab325, and Fab534 antibodies were obtained based on the variable domains of murine antibodies by attaching CH1 and CL constant regions of human kappa-IgG1 to them. The recombinant chimeric Fab fragments were synthesized in the heterologous expression system Escherichia coli, isolated and purified using metal chelate affinity chromatography. The immunochemical properties of the obtained Fab fragments were studied by immunoblotting techniques as well as indirect and competitive ELISA using recombinant Ebola virus proteins: EBOV rGPdTM (recombinant glycoprotein of Ebola hemorrhagic fever virus without the transmembrane domain), NP (nucleoprotein) and VP40 (structural protein). The identity of recombinant chimeric Fab fragments, as well as their specificity to the recombinant glycoprotein of Ebola hemorrhagic fever virus (EBOV GP) was proved. The results of indirect ELISA evidence the absence of immunological cross-reactivity to NP and VP40 proteins of Ebola virus. The dissociation constants of the antigen-antibody complex K d equal to 5.0, 1.0 and 1.0 nM for Fab118, Fab325 and Fab534, respectively, were determined; they indicate high affinity of the obtained experimental samples to EBOV GP. The epitope specificity of Fab fragments was studied using a panel of commercial neutralizing antibodies. It was found that all studied antibodies to EBOV GP are targeted to different epitopes, while the epitopes of the recombinant chimeric Fab fragments and original murine monoclonal antibodies (mAbs) coincide. All the obtained and studied mAbs to EBOV GP are specific to epitopes that coincide or overlap the epitopes of three commercial neutralizing mAbs to Ebola virus: epitopes Fab118 and Fab325 overlap the epitope of the known commercial mAb h13F6; Fab325 epitope also overlaps mAb c6D8 epitope; Fab534 epitope is located near mAb KZ52 conformational epitope, in the formation of which amino acid residues of GP1 and GP2 domains of EBOV GP are involved.  相似文献   

4.
5.
Bacterial expression platforms are frequently used for the expression and production of different recombinant proteins. The full length Ebola virus (EBOV) GP(1,2) gene and subfragments of the GP(1) gene were cloned in a bacterial expression vector as a C-terminal His(6) fusion protein. Surprisingly, the full length EBOV GP(1,2) gene could not be expressed in Escherichia coli. The subfragments of GP(1) were only expressed in small amounts with the exception of one small fragment (subfragment D) which was expressed at very high levels as inclusion bodies. This was seen even in the in vitro translation system with no expression of full length GP(1,2), GP(1) subfragments A and C and low level expression of subfragment B. Only the subfragment D showed high level of expression. In E. coli (Top10), the recombinant GP(1) subfragment D protein was expressed exclusively as an insoluble approximately 25 kDa His(6) fusion protein, which is the expected size for a non-glycosylated recombinant protein. The IMAC purified and refolded non-glycosylated protein was used to immunize mice for the development of monoclonal anti-EBOV antibodies which successfully yielded several monoclonal antibodies with different specificities. The monoclonal and polyclonal antiserum derived from the animals immunized with this recombinant GP(1) subfragment D protein was found to specifically recognize the full length glycosylated EBOV GP(1,2) protein expressed in mammalian 293T cells, thus, demonstrating the immunogenicity of the recombinant subfragment.  相似文献   

6.
Ebola virus (EBOV) expresses three different glycoproteins (GPs) from its GP gene. The primary product, soluble GP (sGP), is secreted in abundance during infection. EBOV sGP has been discussed as a potential pathogenicity factor, however, little is known regarding its functional role. Here, we analyzed the role of sGP in vitro and in vivo. We show that EBOV sGP has two different functions that contribute to infectivity in tissue culture. EBOV sGP increases the uptake of virus particles into late endosomes in HEK293 cells, and it activates the mitogen-activated protein kinase (MAPK) signaling pathway leading to increased viral replication in Huh7 cells. Furthermore, we analyzed the role of EBOV sGP on pathogenicity using a well-established mouse model. We found an sGP-dependent significant titer increase of EBOV in the liver of infected animals. These results provide new mechanistic insights into EBOV pathogenicity and highlight EBOV sGP as a possible therapeutic target.  相似文献   

7.
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.  相似文献   

8.
9.
目的:制备基因重组埃博拉病毒样颗粒,为疫苗研究及埃博拉病毒特异抗原、抗体检测提供基础。方法:根据埃博拉病毒扎伊尔株的GP和VP40蛋白氨基酸序列,以哺乳动物细胞基因表达密码子偏好性进行基因优化设计;化学合成GP和VP40基因片段并分别构建于表达质粒pcDNA3.1或同时构建到具有双表达单元的质粒pBudCE4.1;重组质粒经lipofectamine2000转染293FT细胞;以Western blot检测重组蛋白GP和VP40的表达;通过电镜观察病毒样颗粒。结果:构建的重组质粒经酶切鉴定及测序分析证实构建成功;Western blot结果显示,共转染分别表达GP和VP40的两个质粒或转染共表达两个蛋白的质粒都发现GP特异反应条带产生,且大小与预期相符,此外,转染共表达质粒产生的GP蛋白表达明显强于两个质粒共转染,并同时可检测到VP40的表达;电镜观察到典型的丝状的埃博拉病毒样颗粒。结论:在293FT细胞中基因优化的埃博拉病毒GP和VP40可有效表达并装配为病毒样颗粒,为进一步研究奠定了基础。  相似文献   

10.
Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d''Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB−/− and catL−/− mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.  相似文献   

11.
《Gene》1997,193(2):229-237
Because of the complexities involved in the regulation of gene expression in Escherichia coli and mammalian cells, it is considered general practice to use different vectors for heterologous expression of recombinant proteins in these host systems. However, we have developed and report a shuttle vector system, pGFLEX, that provides high-level expression of recombinant glutathione S-transferase (GST) fusion proteins in E. coli and mammalian cells. pGFLEX contains the cytomegaloma virus (CMV) immediate-early promoter in tandem with the E. coli lacZpo system. The sequences involved in gene expression have been appropriately modified to enable high-level production of fusion proteins in either cell type. The pGFLEX expression system allows production of target proteins fused to either the N or C terminus of the GST π protein and provides rapid purification of target proteins as either GST fusions or native proteins after cleavage with thrombin. The utility of this vector in identifying and purifying a component of a multi-protein complex is demonstrated with cyclin A. The pGFLEX expression system provides a singular and widely applicable tool for laboratory or industrial production of biologically active recombinant proteins in E. coli and mammalian cells.  相似文献   

12.
Some recombinant proteins expressed by baculovirus expression vector systems (BEVS) aggregate because the BEVS can produce large amounts of protein late during infection, when post-translational modification and protein quality control mechanisms are inactive. For expression during earlier stages than that driven by the polyhedrin (polh) very late promoter, transfer vectors were generated in which this promoter was replaced with a green fluorescent protein (GFP) gene controlled by a vp39 late promoter modified to contain HR3, one of the homologous DNA regions (HRs) of Bombyx mori nuclear polyhedrosis virus (BmNPV). The rise times of the fluorescence of GFP expressed by using recombinant viruses carrying the modified vp39 promoter were earlier than those associated with either the polh promoter or the native vp39 promoter lacking HR3. In transient expression assays, the vp39 late promoter in transfer vectors behaved like a delayed-early promoter, and was enhanced by HR3, and required IE-1 protein and various viral gene products encoded on both sides of BmNPV polh. When the vp39 promoter with HR3 was used, the aggregation of several foreign proteins expressed by the BEVS was markedly decreased. This study provides a new option for the expression of sufficiently quality-controlled proteins by using the vp39 promoter and HR3 in BEVS early in baculovirus infection, when the infection has caused little damage in the host cells.  相似文献   

13.
Mycobacterium tuberculosis has always been recognized as one of the most successful pathogens. Bacteriophages that attack and kill mycobacteria offer an alternate mechanism for the curtailment of this bacterium. Upon infection, mycobacteriophages produce lysins that catalyze cell wall peptidoglycan hydrolysis and mycolic acid layer breakdown of the host resulting in bacterial cell rupture and virus release. The ability to lyse bacterial cells make lysins extremely significant. We report here a detailed molecular dissection of the function and regulation of mycobacteriophage D29 Lysin A. Several truncated versions of Lysin A were constructed, and their activities were analyzed by zymography and by expressing them in both Escherichia coli and Mycobacterium smegmatis. Our experiments establish that Lysin A harbors two catalytically active domains, both of which show E. coli cell lysis upon their expression exclusively in the periplasmic space. However, the expression of only one of these domains and the full-length Lysin A caused M. smegmatis cell lysis. Interestingly, full-length protein remained inactive in E. coli periplasm. Our data suggest that the inactivity is ensued by a C-terminal domain that interacts with the N-terminal domain. This interaction was affirmed by surface plasmon resonance. Our experiments also demonstrate that the C-terminal domain of Lysin A selectively binds to M. tuberculosis and M. smegmatis peptidoglycans. Our methodology of studying E. coli cell lysis by Lysin A and its truncations after expressing these proteins in the bacterial periplasm with the help of signal peptide paves the way for a large scale identification and analysis of such proteins obtained from other bacteriophages.  相似文献   

14.
15.
16.
Yin  Xiuchen  Zhang  Shumei  Gao  Youlan  Li  Jinzhe  Tan  Shuyi  Liu  Hongyu  Wu  Xiaoying  Chen  Yuhuan  Liu  Ming  Zhang  Yun 《Virology journal》2012,9(1):1-7

Background

Ebola viruses (EBOVs) cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs).

Results

Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire) GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV), GPCAGDFAF and LYDRLASTV (Zaire EBOV) could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma.

Conclusion

Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.  相似文献   

17.
Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence.  相似文献   

18.
为了阐明水稻Catalase(CAT)的酶学功能,首先需要获得出足量的、活性的该酶蛋白。本研究克隆了水稻OsCATB基因(GenBank accession No.D26484),构建到原核表达载体pGEX-6p-3中形成重组蛋白,继而转入E.coli菌株BL21中进行表达特性研究。结果表明,GST-OsCATB融合蛋白在E.coli中进行了过量表达,表达受到诱导剂浓度、诱导时间、诱导温度和诱导体系等多因素影响;通过谷胱甘肽Sepharose-4B亲合层析,纯化出足量、活性的融合蛋白GST-OsCATB,每克表达细胞(干重)中得率为51 mg GST-OsCATB。  相似文献   

19.
This study aims to design epitope-based peptides for the utility of vaccine development by targeting Glycoprotein 2 (GP2) and Viral Protein 24 (VP24) of the Ebola virus (EBOV) that, respectively, facilitate attachment and fusion of EBOV with host cells. Using various databases and tools, immune parameters of conserved sequences from GP2 and VP24 proteins of different strains of EBOV were tested to predict probable epitopes. Binding analyses of the peptides with major histocompatibility complex (MHC) class I and class II molecules, population coverage, and linear B cell epitope prediction were peroformed. Predicted peptides interacted with multiple MHC alleles and illustrated maximal population coverage for both GP2 and VP24 proteins, respectively. The predicted class-I nonamers, FLYDRLAST, LFLRATTEL and NYNGLLSSI were found to cover the maximum number of MHC I alleles and showed interactions with binding energies of ?7.8, ?8.5 and ?7.7 kcal/mol respectively. Highest scoring class II MHC binding peptides were EGAFFLYDRLASTVI and SPLWALRVILAAGIQ with binding energies of ?6.2 and -5.6 kcal/mol. Putative B cell epitopes were also found on 4 conserved regions in GP2 and two conserved regions in VP24. Our in silico analysis suggests that the predicted epitopes could be a better choice as universal vaccine component against EBOV irrespective of different strains and should be subjected to in vitro and in vivo analyses for further research and development.  相似文献   

20.
Ebola virus (EBOV) cellular attachment and entry is initiated by the envelope glycoprotein (GP) on the virion surface. Entry of this virus is pH dependent and associated with the cleavage of GP by proteases, including cathepsin L (CatL) and/or CatB, in the endosome or cell membrane. Here, we characterize the product of CatL cleavage of Zaire EBOV GP (ZEBOV-GP) and evaluate its relevance to entry. A stabilized recombinant form of the EBOV GP trimer was generated using a trimerization domain linked to a cleavable histidine tag. This trimer was purified to homogeneity and cleaved with CatL. Characterization of the trimeric product by N-terminal sequencing and mass spectrometry revealed three cleavage fragments, with masses of 23, 19, and 4 kDa. Structure-assisted modeling of the cathepsin L-cleaved ZEBOV-GP revealed that cleavage removes a glycosylated glycan cap and mucin-like domain (MUC domain) and exposes the conserved core residues implicated in receptor binding. The CatL-cleaved ZEBOV-GP intermediate bound with high affinity to a neutralizing antibody, KZ52, and also elicited neutralizing antibodies, supporting the notion that the processed intermediate is required for viral entry. Together, these data suggest that CatL cleavage of EBOV GP exposes its receptor-binding domain, thereby facilitating access to a putative cellular receptor in steps that lead to membrane fusion.Ebola virus (EBOV) is a member of the Filoviridae family and causes severe hemorrhagic fever in humans and nonhuman primates, with case fatality rates of up to 90%. Virus entry and attachment is mediated by a single envelope glycoprotein (GP) as a class I fusion protein, which is proteolytically processed during maturation into two subunits, GP1 and GP2. The GP1 N terminus contains a putative receptor-binding domain (RBD) (2, 9, 11, 12), and the GP2 C terminus contains a fusion peptide, two heptad-repeat regions, and a transmembrane domain. GP1 and GP2 are linked by a disulfide bond (Cys53-Cys609) and form trimers of heterodimers on the surface of virions. EBOV GP is also extensively glycosylated, especially within a region of GP1 termed the mucin-like domain (MUC domain), which contains multiple N- and O-linked glycans. We and others have previously shown the MUC domain of GP1 to be cytotoxic and to induce cell rounding (17, 21), and deletion of this region increases pseudovirus infectivity compared to that of full-length GP (11). The MUC domain, however, is also known to enhance cell binding through the human macrophage C-type lectin specific for galactose and N-acetylglucosamine (hMGL) (18), suggesting that glycans in this domain may be involved in the initial cellular attachment. Several other studies have identified factors that enhance cell binding and/or infectivity, including folate receptor α (4), β integrins (19), C-type lectins DC-SIGN and L-SIGN (1), and Tyro3 family members (16). However, the critical cellular receptor(s) thought to interact directly with the GP1 RBD have yet to be identified.Following virus uptake into host cells, which is presumed to occur via receptor-mediated endocytosis (13), the virion is transported to acidified endosomes where GP is exposed to a low pH and enzymatic processing. EBOV entry is pH dependent (19); however, unlike influenza virus, for which a low pH alone induces the conformational changes that lead to membrane fusion (20), recent studies indicate that proteolysis by endosomal cathepsin L (CatL) and CatB (active only at pH 5 to 6) is a dependent step for EBOV entry (5, 14). Although the intermediate EBOV GP generated by CatL cleavage is known to have increased binding and infectivity to target cells (7), little else is known about the cleavage product, specifically where the proteolytic sites are within GP and whether the cleaved product is immunogenic. Recently, Dube and colleagues have proposed a model for CatL cleavage based on thermolysin cleavage (6). However, thermolysin is nonphysiological in this setting and is a member of the metalloenzyme-protease family, whereas CatL is a member of the cysteine-protease family and essential for EBOV entry. In this study, we have characterized the physiological CatL cleavage of the Zaire EBOV GP (ZEBOV-GP) trimer and explored the effect of cleavage on the immunological properties of the GP trimer. To generate this intermediate, we expressed and purified a recombinant form of the Ebola GP trimer ectodomain that had been stabilized with a trimerization motif derived from T4 fibritin (foldon) and purified to homogeneity. The recombinant protein was cleaved with CatL, and the stable cleavage intermediate was characterized biochemically and immunologically. We identified several sites of CatL cleavage within the ZEBOV-GP ectodomain which are different than those observed with thermolysin. The cleaved intermediate product retained binding to the EBOV-neutralizing antibody KZ52 and elicited EBOV-neutralizing antibodies in vaccinated mice. Our data, in conjunction with the recently determined structure of the ZEBOV-GP ectodomain (10), shed light on the critical role of CatL processing in GP structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号