首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Type III polyketide synthases (PKSs) biosynthesize varied classes of metabolites with diverse bio-functionalities. Inherent promiscuous substrate specificity, multiple elongations of reaction intermediates and several modes of ring-closure, confer the proteins with the ability to generate unique scaffolds from limited substrate pools. Structural studies have identified crucial amino acid residues that dictate type III PKS functioning, though cyclization specific residues need further investigation. PKSIIINc, a functionally and structurally characterized type III PKS from the fungus, Neurospora crassa, is known to biosynthesize alkyl-resorcinol, alkyl-triketide- and alkyl-tetraketide-α-pyrone products. In this study, we attempted to identify residue positions governing cyclization specificity in PKSIIINc through comparative structural analysis. Structural comparisons with other type III PKSs revealed a motif with conserved hydroxyl/thiol groups that could dictate PKSIIINc catalysis. Site-directed mutagenesis of Cys120 and Ser186 to Ser and Cys, respectively, altered product profiles of mutant proteins. While both C120S and S186C proteins retained wild-type PKSIIINc product activity, S186C favoured lactonization and yielded higher amounts of the α-pyrone products. Notably, C120S gained new cyclization capability and biosynthesized acyl-phloroglucinol in addition to wild-type PKSIIINc products. Generation of alkyl-resorcinol and acyl-phloroglucinol by a single protein is a unique observation in fungal type III PKS family. Mutation of Cys120 to bulky Phe side-chain abrogated formation of tetraketide products and adversely affected overall protein stability as revealed by molecular dynamics simulation studies. Our investigations identify residue positions governing cyclization programming in PKSIIINc protein and provide insights on how subtle variations in protein cores dictate product profiles in type III PKS family.  相似文献   

2.
Octaketide synthase (OKS) from Aloe arborescens is a plant-specific type III polyketide synthase (PKS) that catalyzes iterative condensations of eight molecules of malonyl-CoA to produce the C16 aromatic octaketides SEK4 and SEK4b. On the basis of the crystal structures of OKS, the F66L/N222G double mutant was constructed and shown to produce an unnatural dodecaketide TW95a by sequential condensations of 12 molecules of malonyl-CoA. The C24 naphthophenone TW95a is a product of the minimal type II PKS (whiE from Streptomyces coelicolor), and is structurally related to the C20 decaketide benzophenone SEK15, the product of the OKS N222G point mutant. The C24 dodecaketide naphthophenone TW95a is the first and the longest polyketide scaffold generated by a structurally simple type III PKS. A homology model predicted that the active-site cavity volume of the F66L/N222G mutant is increased to 748 Å3, from 652 Å3 of the wild-type OKS. The structure-based engineering thus greatly expanded the catalytic repertoire of the simple type III PKS to further produce larger and more complex polyketide molecules.  相似文献   

3.
J M Jez  M E Bowman  J P Noel 《Biochemistry》2001,40(49):14829-14838
Chalcone synthase (CHS) belongs to the family of type III polyketide synthases (PKS) that catalyze formation of structurally diverse polyketides. CHS synthesizes a tetraketide by sequential condensation of three acetyl anions derived from malonyl-CoA decarboxylation to a p-coumaroyl moiety attached to an active site cysteine. Gly256 resides on the surface of the CHS active site that is in direct contact with the polyketide chain derived from malonyl-CoA. Thus, position 256 serves as an ideal target to probe the link between cavity volume and polyketide chain-length determination in type III PKS. Functional examination of CHS G256A, G256V, G256L, and G256F mutants reveals altered product profiles from that of wild-type CHS. With p-coumaroyl-CoA as a starter molecule, the G256A and G256V mutants produce notably more tetraketide lactone. Further restrictions in cavity volume such as that seen in the G256L and G256F mutants yield increasing levels of the styrylpyrone bis-noryangonin from a triketide intermediate. X-ray crystallographic structures of the CHS G256A, G256V, G256L, and G256F mutants establish that these substitutions reduce the size of the active site cavity without significant alterations in the conformations of the polypeptide backbones. The side chain volume of position 256 influences both the number of condensation reactions during polyketide chain extension and the conformation of the triketide and tetraketide intermediates during the cyclization reaction. These results viewed in conjunction with the natural sequence variation of residue 256 suggest that rapid diversification of product specificity without concomitant loss of substantial catalytic activity in related CHS-like enzymes can occur by site-specific evolution of side chain volume at position 256.  相似文献   

4.
Sequence analysis of the metabolically rich 8.7-Mbp genome of the model actinomycete Streptomyces coelicolor A3(2) revealed three genes encoding predicted type III polyketide synthases (PKSs). We report the inactivation, expression, and characterization of the type III PKS homologous SCO1206 gene product as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Incubation of recombinant THNS with malonyl-CoA showed THN production, as demonstrated by UV and HPLC analyses. The Km value for malonyl-CoA and the kcat value for THN synthesis were determined spectrophotometrically to be 3.58±0.85 µM and 0.48±0.03 min–1, respectively. The C-terminal region of S. coelicolor THNS, which is longer than most other bacterial and plant type III PKSs, was shortened by 25 amino acid residues and the resulting mutant was shown to be slightly more active (Km=1.97±0.19 µM, kcat=0.75±0.04 min–1) than the wild-type enzyme.  相似文献   

5.
The Mycobacterium tuberculosis genome has revealed a remarkable array of polyketide synthases (PKSs); however, no polyketide product has been isolated thus far. Most of the PKS genes have been implicated in the biosynthesis of complex lipids. We report here the characterization of two novel type III PKSs from M. tuberculosis that are involved in the biosynthesis of long-chain alpha-pyrones. Measurement of steady-state kinetic parameters demonstrated that the catalytic efficiency of PKS18 protein was severalfold higher for long-chain acyl-coenzyme A substrates as compared with the small-chain precursors. The specificity of PKS18 and PKS11 proteins toward long-chain aliphatic acyl-coenzyme A (C12 to C20) substrates is unprecedented in the chalcone synthase (CHS) family of condensing enzymes. Based on comparative modeling studies, we propose that these proteins might have evolved by fusing the catalytic machinery of CHS and beta-ketoacyl synthases, the two evolutionarily related members with conserved thiolase fold. The mechanistic and structural importance of several active site residues, as predicted by our structural model, was investigated by performing site-directed mutagenesis. The functional identification of diverse catalytic activity in mycobacterial type III PKSs provide a fascinating example of metabolite divergence in CHS-like proteins.  相似文献   

6.
7.
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.Type III polyketide synthases (PKSs), represented by a plant chalcone synthase (CHS), are the condensing enzymes that catalyze the synthesis of aromatic polyketides in plants, fungi, and bacteria (2). CHS catalyzes the decarboxylative condensation of p-coumaroyl-coenzyme A (p-coumaroyl-CoA), called a starter substrate, with three malonyl-CoAs, called extender substrates, and synthesizing a tetraketide intermediate. The synthesized tetraketide intermediate was cyclized and aromatized by CHS and resulted in naringenin chalcone. Like CHS, most of the type III PKSs catalyze the condensation of a starter substrate with several molecules of an extender substrate and cyclization. There are many type III PKSs that differ in these specificities.Until recently, type III PKSs were discovered only from plants. In 1999, the first bacterial type III PKS, RppA, was discovered. RppA catalyzes the condensation of five malonyl-CoAs to synthesize 1,3,6,8-tetrahydroxynaphthalene, which is a precursor of hexahydroxyperylenequinone melanin in the actinomycete Streptomyces griseus (4). Since then, the genome projects of various bacteria have revealed that type III PKSs are widely distributed in a variety of bacteria. For example, ArsB and ArsC, both of which are type III PKSs in Azotobacter vinelandii, catalyze the synthesis of alkylresorcinols and alkylpyrones, respectively, which are essential for encystment as the major lipids in the cyst membrane (5). In S. griseus, the srs operon consisting of srsA, srsB, and srsC is responsible for the synthesis of methylated phenolic lipids derived from alkylresorcinols and alkylpyrones (6). The function of each of the operon members is that SrsA is a type III PKS responsible for the synthesis of phenolic lipids alkylresorcinol and alkylpyrones, SrsB is a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC is a hydroxylase acting on the alkylresorcinol methyl ethers. The phenolic lipids synthesized by the Srs enzymes confer resistance to β-lactam antibiotics (6). Therefore, it is suggested that phenolic lipids play an important role as minor components in the biological membrane in various bacteria. In fact, srsAB- and srsABC-like operons are distributed widely in both gram-positive and -negative bacteria (see Fig. S1 in the supplemental material). However, most of these type III PKSs have not been characterized.Bacillus subtilis is one of the best-characterized gram-positive bacteria. BcsA, which stands for bacterial chalcone synthase, was annotated as a homologue of type III PKS in B. subtilis (3). As described in this paper, however, this annotation needs correction. We renamed the gene bpsA (for Bacillus pyrone synthase). Moreover, the functional unknown gene ypbQ is located next to bpsA. YpbQ, consisting of 168 amino acid residues, contained an isoprenylcysteine carboxyl methyltransferase (ICMT) domain of the ICMT family members, which are unique membrane proteins that are involved in the posttranslational modification of oncogenic proteins (23). Therefore, the bpsA and ypbQ genes were predicted to form an operon, just like srsA and srsB in the srs operon in S. griseus. We therefore named ypbQ, a thus-far functionally unknown gene, bpsB.In this study, we characterized the functions of BpsA and BpsB by in vivo and in vitro experiments. The in vivo experiments revealed that the overexpression of bpsA in B. subtilis led to the production of triketide pyrones, and the co-overexpression of bpsA and bpsB led to the production of triketide pyrone methyl ethers. The in vitro analysis showed that BpsA produced triketide pyrones and a small amount of tetraketide pyrones and tetraketide resorcinols from long-chain fatty acyl CoA thioesters as starter substrates and malonyl-CoA as an extender substrate. Therefore, BpsA is a type III PKS that is responsible for the synthesis of alkylpyrones, and BpsB is a methyltransferase that acts on the alkylpyrones to yield alkylpyrone methyl ethers. BpsB is the first enzyme found to methylate alkylpyrones. Furthermore, we attempted to analyze the biological function of the aliphatic polyketides by disrupting the bpsA and bpsB genes, but no distinct phenotypic changes were detected under laboratory conditions.  相似文献   

8.
9.

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.

  相似文献   

10.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the ‘coumaroyl binding pocket’ in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.  相似文献   

11.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide chalcone. A homology model suggested that BAS has the same overall fold as CHS with cavity volume almost as large as that of CHS. One of the most characteristic features is that Rheum palmatum BAS lacks active site Phe-215; the residues 214LF conserved in type III PKSs are uniquely replaced by IL. Our observation that the BAS I214L/L215F mutant exhibited chalcone-forming activity in a pH-dependent manner supported a hypothesis that the absence of Phe-215 in BAS accounts for the interruption of the polyketide chain elongation at the diketide stage. On the other hand, Phe-215 mutants of Scutellaria baicalensis CHS (L214I/F215L, F215W, F215Y, F215S, F215A, F215H, and F215C) afforded increased levels of truncated products; however, none of them generated benzalacetone. These results confirmed the critical role of Phe-215 in the polyketide formation reactions and provided structural basis for understanding the structure-function relationship of the plant type III PKSs.  相似文献   

12.
PKS11 is one of three type III polyketide synthases (PKSs) identified in Mycobacterium tuberculosis. Although many PKSs in M. tuberculosis have been implicated in producing complex cell wall glycolipids, the biological function of PKS11 is unknown. PKS11 has previously been proposed to synthesize alkylpyrones from fatty acid substrates. We solved the crystal structure of M. tuberculosis PKS11 and found the overall fold to be similar to other type III PKSs. PKS11 has a deep hydrophobic tunnel proximal to the active site Cys-138 to accommodate substrates. We observed electron density in this tunnel from a co-purified molecule that was identified by mass spectrometry to be palmitate. Co-crystallization with malonyl-CoA (MCoA) or methylmalonyl-CoA (MMCoA) led to partial turnover of the substrate, resulting in trapped intermediates. Reconstitution of the reaction in solution confirmed that both co-factors are required for optimal activity, and kinetic analysis shows that MMCoA is incorporated first, then MCoA, followed by lactonization to produce methyl-branched alkylpyrones.  相似文献   

13.
The superfamily of plant and bacterial type III polyketide synthases (PKSs) produces diverse metabolites with distinct biological functions. PKS18, a type III PKS from Mycobacterium tuberculosis, displays an unusual broad specificity for aliphatic long-chain acyl-coenzyme A (acyl-CoA) starter units (C(6)-C(20)) to produce tri- and tetraketide pyrones. The crystal structure of PKS18 reveals a 20 A substrate binding tunnel, hitherto unidentified in this superfamily of enzymes. This remarkable tunnel extends from the active site to the surface of the protein and is primarily generated by subtle changes of backbone dihedral angles in the core of the protein. Mutagenic studies combined with structure determination provide molecular insights into the structural elements that contribute to the chain length specificity of the enzyme. This first bacterial type III PKS structure underlines a fascinating example of the way in which subtle changes in protein architecture can generate metabolite diversity in nature.  相似文献   

14.
Lichens are known to produce a variety of secondary metabolites including polyketides, which have valuable biological activities. Some polyketides are produced solely by lichens. The biosynthesis of these compounds is primarily governed by iterative type I polyketide synthases. Hypogymnia physodes synthesize polyketides such as physodic, physodalic and hydroxyphysodic acid and atranorin, which are non-reducing polyketides. Two novel non-reducing polyketide synthase (PKS) genes were isolated from a fosmid genomic library of a mycobiont of H. physodes using a 409bp fragment corresponding to part of the reductase (R) domain as a probe. H. physodes PKS1 (Hyopks1) and PKS2 (Hypopks2) contain keto synthase (KS), acyl transferase (AT), acyl carrier protein (ACP), methyl transferase (ME) and R domains. Classification based on phylogeny analysis using the translated KS and AT domains demonstrated that Hypopks1 and Hypopks2 are members of the fungal non-reducing PKSs clade III. This is the first report of non-reducing PKSs containing the R domain-mediated release mechanisms in lichens, which are also rare fungal type I PKS in non-lichenized filamentous fungi.  相似文献   

15.
Miku Matsuzawa 《Phytochemistry》2010,71(10):1059-306
Alkylresorcinols, produced by various plants, bacteria, and fungi, are bioactive compounds possessing beneficial activities for human health, such as anti-cancer activity. In rice, they accumulate in seedlings, contributing to protection against fungi. Alkylresorcylic acids, which are carboxylated forms of alkylresorcinols, are unstable compounds and decarboxylate readily to yield alkylresorcinols. Genome mining of the rice Oryza sativa identified two type III polyketide synthases, named ARAS1 (alkylresorcylic acid synthase) and ARAS2, that catalyze the formation of alkylresorcylic acids. Both enzymes condensed fatty acyl-CoAs with three C2 units from malonyl-CoA and cyclized the resulting tetraketide intermediates via intramolecular C-2 to C-7 aldol condensation. The alkylresorcylic acids thus produced were released from the enzyme and decarboxylated non-enzymatically to yield alkylresorcinols. This is the first report on a plant type III polyketide synthase that produces tetraketide alkylresorcylic acids as major products.  相似文献   

16.
Dreier J  Khosla C 《Biochemistry》2000,39(8):2088-2095
Type II polyketide synthases (PKSs) are a family of multienzyme systems that catalyze the biosynthesis of polyfunctional aromatic natural products such as actinorhodin, frenolicin, tetracenomycin, and doxorubicin. A central component in each of these systems is the beta-ketoacyl synthase-chain length factor (KS-CLF) heterodimer. In the presence of an acyl carrier protein (ACP) and a malonyl-CoA:ACP malonyl transferase (MAT), this enzyme synthesizes a polyketide chain of defined length from malonyl-CoA. We have investigated the role of the actinorhodin KS-CLF in priming, elongation, and termination of its octaketide product by subjecting the wild-type enzyme and selected mutants to assays that probe key steps in the overall catalytic cycle. Under conditions reflecting steady-state turnover of the PKS, a unique acyl-ACP intermediate is detected that carries a long, possibly full-length, acyl chain. This species cannot be synthesized by the C169S, H309A, K341A, and H346A mutants of the KS, all of which are blocked in early steps in the PKS catalytic cycle. These four residues are universally conserved in all known KSs. Malonyl-ACP alone is sufficient for kinetically and stoichiometrically efficient synthesis of polyketides by the wild-type KS-CLF, but not by heterodimers that carry the mutations listed above. Among these mutants, C169S is an efficient decarboxylase of malonyl-ACP, but the H309A, K341A, and H346A mutants are unable to catalyze decarboxylation. Transfer of label from [(14)C]malonyl-ACP to the nucleophile at position 169 in the KS can be detected for the wild-type enzyme and for the C169S and K341A mutants, but not for the H309A mutant and only very weakly for the H346A mutant. A model is proposed for decarboxylative priming and extension of a polyketide chain by the KS, where C169 and H346 form a catalytic dyad for acyl chain attachment, H309 positions the malonyl-ACP in the active site and supports carbanion formation by interacting with the thioester carbonyl, and K341 enhances the rate of malonyl-ACP decarboxylation via electrostatic interaction. Our data also suggest that the ACP and the KS dissociate after each C-C bond forming event, and that the newly extended acyl chain is transferred back from the ACP pantetheine to the KS cysteine before dissociation can occur. Chain termination is most likely the rate-limiting step in polyketide biosynthesis. Within the act CLF, neither the universally conserved S145 residue nor Q171, which aligns with the active site cysteine of the ketosynthase, is essential for PKS activity. The results described here provide a basis for a better understanding of the catalytic cycle of type II PKSs and fatty acid synthases.  相似文献   

17.
Yanyan Li  Rolf Müller 《Phytochemistry》2009,70(15-16):1850-1857
Myxobacteria are prolific producers of a wide variety of secondary metabolites. The vast majority of these compounds are complex polyketides which are biosynthesised by multimodular polyketide synthases (PKSs). In contrast, few myxobacterial metabolites isolated to date are derived from non-modular PKSs, in particular type III PKSs. This review reports our progress on the characterisation of type III PKSs in myxobacteria. We also summarize current knowledge on bacterial type III PKSs, with a special focus on the evolutionary relationship between plant and bacterial enzymes. The biosynthesis of a quinoline alkaloid in Stigmatella aurantiaca by a non-modular PKS is also discussed.  相似文献   

18.
The conserved histidine residues, His-191, His-227, His-345, and His-378, in Bacillus stearothermophilus leucine aminopeptidase II (LAPII) were replaced with leucine by site-directed mutagenesis. The overexpressed wild-type and mutant enzymes have been purified by nickel-chelate chromatography and their molecular masses were approximately 44.5 kDa. Under assay conditions, no LAP activity was detected in H345L and H378L. Although the Km value for H191L increased more than 30% with respect to the wild-type LAPII, alteration in this residue did not lead to a significant change on the catalytic efficiency. The 39% decrease in Kcat/Km for H227L was partly caused by a 3.9-fold increase in Km value. Based on these results, it is suggested that His-345 and His-378 play a crucial role in the catalytic reaction of B. stearothermophilus LAPII.  相似文献   

19.
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.  相似文献   

20.
Type III polyketide synthases (PKSs) are the condensing enzymes that catalyze the formation of a myriad of aromatic polyketides in plant, bacteria, and fungi. Here we report the cloning and characterization of a putative type III PKS from Aspergillusniger, AnPKS. This enzyme catalyzes the synthesis of alkyl pyrones from C2 to C18 starter CoA thioesters with malonyl-CoA as an extender CoA through decaboxylative condensation and cyclization. It displays broad substrate specificity toward fatty acyl-CoA starters to yield triketide and tetraketide pyrones, with benzoyl-CoA as the most preferred starter. The optimal temperature and pH of AnPKS are 50°C and 8, respectively. Under optimal conditions, the enzyme shows the highest catalytic efficiency (k(cat)/K(m)) of 7.4×10(5)s(-1)M(-1) toward benzoyl-CoA. Homology modeling and site-directed mutagenesis were used to probe the molecular basis of its substrate specificity. This study should open doors for further engineering of AnPKS as a biocatalyst for synthesis of value-added polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号