首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Modularity is a fundamental property of megasynthases such as polyketide synthases (PKSs). In this study, we exploit the close resemblance between PKSs and animal fatty acid synthase (FAS) to re‐engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by sequence and structural information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS‐like modules as well as bimodular constructs. The novel re‐engineered modules resemble all four common types of PKSs and demonstrate that this approach can be a powerful tool to deliver products with higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS‐based biosynthetic pathways for custom compound design.  相似文献   

6.
7.
The biosynthesis of complex reduced polyketides is catalysed in actinomycetes by large multifunctional enzymes, the modular Type I polyketide synthases (PKSs). Most of our current knowledge of such systems stems from the study of a restricted number of macrolide-synthesising enzymes. The sequencing of the genes for the biosynthesis of monensin A, a typical polyether ionophore polyketide, provided the first genetic evidence for the mechanism of oxidative cyclisation through which polyethers such as monensin are formed from the uncyclised products of the PKS. Two intriguing genes associated with the monensin PKS cluster code for proteins, which show strong homology with enzymes that trigger double bond migrations in steroid biosynthesis by generation of an extended enolate of an unsaturated ketone residue. A similar mechanism operating at the stage of an enoyl ester intermediate during chain extension on a PKS could allow isomerisation of an E double bond to the Z isomer. This process, together with epoxidations and cyclisations, form the basis of a revised proposal for monensin formation. The monensin PKS has also provided fresh insight into general features of catalysis by modular PKSs, in particular into the mechanism of chain initiation. Journal of Industrial Microbiology & Biotechnology (2001) 27, 360–367. Received 18 March 2001/ Accepted in revised form 09 July 2001  相似文献   

8.
Microbial type III polyketide synthases (PKSs) have revealed remarkable mechanistic as well as functional versatility. Recently, a type III PKS homolog from Azotobacter has been implicated in the biosynthesis of resorcinolic lipids, thus adding a new functional significance to this class of proteins. Here, we report the structural and mutational investigations of a novel type III PKS protein from Neurospora crassa involved in the biosynthesis of resorcinolic metabolites by utilizing long chain fatty acyl-CoAs. The structure revealed a long hydrophobic tunnel responsible for its fatty acyl chain length specificity resembling that of PKS18, a mycobacterial type III PKS. Structure-based mutational studies to block the tunnel not only altered the fatty acyl chain specificity but also resulted in change of cyclization pattern affecting the product profile. This first structural characterization of a resorcinolic lipid synthase provides insights into the coordinated functioning of cyclization and a substrate-binding pocket, which shows mechanistic intricacy underlying type III PKS catalysis.  相似文献   

9.
Streptomyces coelicolor A3(2) synthesizes each half molecule of the dimeric polyketide antibiotic actinorhodin (Act) from one acetyl and seven malonyl building units, catalyzed by the Act polyketide synthase (PKS). The synthesis is analogous to fatty acid biosynthesis, and there is evident structural similarity between PKSs of Streptomyces spp. and fatty acid synthases (FASs). Each system should depend on a malonyl coenzyme A:acyl carrier protein malonyltransferase, which charges the FAS or PKS with the malonyl units for carbon chain extension. We have purified the Act acyl carrier protein-dependent malonyltransferase from stationary-phase, Act-producing cultures and have determined the N-terminal amino acid sequence and cloned the structural gene. The deduced amino acid sequence resembles those of known malonyltransferases of FASs and PKSs. The gene lies some 2.8 Mb from the rest of the act cluster, adjacent to an open reading frame whose gene product resembles ketoacylsynthase III of Escherichia coli FAS. The malonyltransferase was expressed equally as well during vegetative growth (when other components of the act PKS were not expressed) as in the stationary phase, suggesting that the malonyltransferase may be shared between the FAS and PKS of S. coelicolor. Disruption of the operon containing the malonyltransferase gene proved to be impossible, supporting the idea that the malonyltransferase plays an essential role in fatty acid biosynthesis.  相似文献   

10.
Sequence comparisons of multiple acyltransferase (AT) domains from modular polyketide synthases (PKSs) have highlighted a correlation between a short sequence motif and the nature of the extender unit selected. When this motif was specifically altered in the bimodular model PKS DEBS1-TE of Saccharopolyspora erythraea, the products included triketide lactones in which acetate extension units had been incorporated instead of propionate units at the predicted positions. We also describe a cassette system for convenient construction of hybrid modular PKSs based on the tylosin PKS in Streptomyces fradiae and demonstrate its use in domain and module swaps.  相似文献   

11.
12.
Polyketides are a family of complex natural products that are built from simple carboxylic acid building blocks. In microorganisms, the majority of these secondary metabolites are produced by exceptionally large, multifunctional proteins termed polyketide synthases (PKSs). Each unit of a type I PKS assembly line resembles a mammalian type fatty acid synthase (FAS), although certain domains are optionally missing. The evolutionary analysis of microbial PKS has revealed a long joint evolution process of PKSs and FASs. The phylogenomic analysis of modular type I PKSs as the most widespread PKS type in bacteria showed a large impact of gene duplications and gene losses on the evolution of type I PKS in different bacterial groups. The majority of type I PKSs in actinobacteria and cyanobacteria may have evolved from a common ancestor, whereas in proteobacteria most type I PKSs were acquired from other bacterial groups. The modularization of type I PKSs almost unexceptionally started with multiple duplications of a single ancestor module. The repeating modules represent ideal platforms for recombination events that can lead to corresponding changes in the actual chemistry of the products. The analysis of these “natural reprogramming” events of PKSs may assist in the development of concepts for the biocombinatorial design of bioactive compounds.  相似文献   

13.
A 5.3-kb region of the Streptomyces coelicolor actinorhodin gene cluster, including the genes for polyketide biosynthesis, was sequenced. Six identified open reading frames (ORF1-6) were related to genetically characterized mutations of classes actI, VII, IV, and VB by complementation analysis. ORF1-6 run divergently from the adjacent actIII gene, which encodes the polyketide synthase (PKS) ketoreductase, and appear to form an operon. The deduced gene products of ORF1-3 are similar to fatty acid synthases (FAS) of different organisms and PKS genes from other polyketide producers. The predicted ORF5 gene product is similar to type II beta-lactamases of Bacillus cereus and Bacteroides fragilis. The ORF6 product does not resemble other known proteins. Combining the genetical, biochemical, and similarity data, the potential activities of the products of the six genes can be postulated as: 1) condensing enzyme/acyl transferase (ORF1 + ORF2); 2) acyl carrier protein (ORF3); 3) putative cyclase/dehydrase (ORF4); 4) dehydrase (ORF5); and 5) "dimerase" (ORF6). The data show that the actinorhodin PKS consists of discrete monofunctional components, like that of the Escherichia coli (Type II) FAS, rather than the multifunctional polypeptides for the macrolide PKSs and vertebrate FASs (Type I).  相似文献   

14.
Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non‐toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in 2‐day‐old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild‐type zygospores contain knob‐like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild‐type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption in zygospore development. In agreement with the role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild‐type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions.  相似文献   

15.
Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C6–C14) to produce tri- and tetraketide pyrones. Mutations at H331 and N364 caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His227 and Leu366 play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.  相似文献   

16.
The enoylreductase (ER) is the final common enzyme from modular polyketide synthases (PKSs) to be structurally characterized. The 3.0 ?-resolution structure of the didomain comprising the ketoreductase (KR) and ER from the second module of the spinosyn PKS reveals that ER shares an ~600-?(2) interface with KR distinct from that of the related mammalian fatty acid synthase (FAS). In contrast to the ER domains of the mammalian FAS, the ER domains of the second module of the spinosyn PKS do not make contact across the two-fold axis of the synthase. This monomeric organization may have been necessary in the evolution of multimodular PKSs to enable acyl carrier proteins to access each of their cognate enzymes. The isolated ER domain showed activity toward a substrate analog, enabling us to determine the contributions of its active site residues.  相似文献   

17.
Plant phenolic compounds form a valuable resource of secondary metabolites having a broad spectrum of biological activities. Type III polyketide synthases play a key role in the formation of basic structural skeleton of the phenolic compounds. As a group of medicinal plants, PKSs with novel features are expected in the genome of Zingiberaceae. The genomic exploration of PKS in Alpinia calcarata conducted in this study identified the presence of an unusual intron at the region forming the second exon of typical PKSs, forming a gateway information of distribution of novel PKSs in Zingiberaceae.  相似文献   

18.
Muggia L  Lucia M  Grube M  Martin G 《Fungal biology》2010,114(4):379-385
Lichenized and non-lichenized fungi produce a wide range of secondary metabolites. So far, type I polyketide synthases (PKSs) are the suggested catalysts for the biosynthesis of lichen compounds. We were interested whether lichen mycobionts also contain type III PKSs, representing a class that was only recently discovered in fungi. With an alignment of known type III CHS-like genes we applied the CODEHOP strategy to design degenerate PCR primers. We further screened available fungal genomes for type III PKS genes and aligned these sequences for a phylogenetic analysis. Type III-like genes from lichen mycobionts are closely related to those known from non-lichenized fungi, but not to those of bacteria and/or plants. We conclude that type III PKS genes are ubiquitous in fungi. They are present in diverse unrelated lichen mycobionts, but their function in lichens is so far unclear.  相似文献   

19.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

20.
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号