首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The PTEN tumor suppressor functions as a phosphatase of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and negatively regulates the PI 3-kinase signaling pathway. Our previous studies showed that PTEN expression causes accumulation of cyclin-dependent kinase inhibitor p27Kip1 and G1 cell cycle arrest. Here, we show that PTEN negatively regulates expression of cyclin D1 and that cyclin D1 plays a unique role in p27 proteolysis. Co-expression of cyclin D1, but not cyclin E, is sufficient to restore p27 levels in PTEN-expressing cells. Conversely, loss of cyclin D1 by siRNA causes p27 accumulation. Silencing of the cyclin D1 gene or inhibition of the PI 3-kinase pathway prevents formation of the SCFSKP2 complex, with a simultaneous increase in CUL1 binding to CAND1. CAND1-CUL1 binding is known to block the accessibility of CUL1 to SKP1 and SKP2. We have found that CUL1 is less neddylated in cells that have lost cyclin D1 expression. Using an in vitro extract system, we found that the extracts prepared from cells lacking cyclin D1 have reduced activity to neddylate CUL1, in a manner similar to extracts from cells treated with a PI 3-kinase inhibitor or in G0 resting cells. Consistenly, the steady state levels of CUL1 neddylation were found lower under these conditions. Our studies reveal that PTEN/PI 3-kinase signaling and cyclin D1 control a novel pathway that regulates assembly of the SCFSKP2 complex by modulating cullin neddylation and CAND1 binding at the G1/S cell cycle transition.  相似文献   

2.
The tumor suppressor gene PTEN is a phosphoinositide phosphatase that is inactivated by deletion and/or mutation in diverse human tumors. Wild-type PTEN is expressed both in the cytoplasm and nucleus in normal cells, with a preferential nuclear localization in differentiated or resting cells. To elucidate the relationship between PTEN's subcellular localization and its biologic activities, we constructed different PTEN mutants that targeted PTEN protein into different subcellular compartments. Our data show that the subcellular localization patterns of a PTEN (deltaPDZB) mutant versus a G129R phosphatase mutant were indistinguishable from those of wild-type PTEN. In contrast, the Myr-PTEN mutant demonstrated an enhanced association with the cell membrane. We found that nuclear PTEN alone is capable of suppressing anchorage-independent growth and facilitating G1 arrest in U251MG cells without inhibiting Akt activity. Nuclear compartment-specific PTEN-induced growth suppression is dependent on possessing a functional lipid phosphatase domain. In addition, the down-regulation of p70S6K could be mediated, at least in part, through activation of AMP-activated protein kinase in an Akt-independent fashion. Introduction of a constitutively active mutant of Akt, Akt-DD, only partially rescues nuclear PTEN-mediated growth suppression. Our collective results provide the first direct evidence that PTEN can contribute to G1 growth arrest through an Akt-independent signaling pathway.  相似文献   

3.
4.
5.
The tumor suppressor PTEN is a dual protein and phosphoinositide phosphatase that negatively controls the phosphatidylinositol (PI) 3-kinase/protein kinase B (Akt/PKB) signaling pathway. Interleukin-13 via the activation of the class I PI 3-kinase has been shown to inhibit the macroautophagic pathway in the human colon cancer HT-29 cells. Here we demonstrate that the wild-type PTEN is expressed in this cell line. Its overexpression directed by an inducible promoter counteracts the interleukin-13 down-regulation of macroautophagy. This effect was dependent upon the phosphoinositide phosphatase activity of PTEN as determined by using the mutant G129E, which has only protein phosphatase activity. The role of Akt/PKB in the signaling control of interleukin-13-dependent macroautophagy was investigated by expressing a constitutively active form of the kinase ((Myr)PKB). Under these conditions a dramatic inhibition of macroautophagy was observed. By contrast a high rate of autophagy was observed in cells expressing a dominant negative form of PKB. These data demonstrate that the signaling control of macroautophagy overlaps with the well known PI 3-kinase/PKB survival pathway and that the loss of PTEN function in cancer cells inhibits a major catabolic pathway.  相似文献   

6.
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.  相似文献   

7.
8.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

9.
10.
11.
Exposure of human fibroblasts to doses of ionizing radiation sufficient to cause a permanent growth arrest repressed the expression of genes induced late during G(0)/G(1)-phase traverse, including both cyclin A and cyclin E. In addition, radiation prevented the cell cycle-dependent activation of cyclin D1-associated kinase activity and the subsequent phosphorylation of the RB tumor suppressor protein. Exposure to radiation did not alter the cellular levels of cyclin D1 protein, nor did it alter the formation of cyclin D1-CDK4 complexes. Surprisingly, the repression of cyclin D1-associated kinase activity in damaged mitogen-stimulated quiescent cells could not be accounted for by a relative increase in the association of CDKN1A (also known as p21(Cip1)) with cyclin D1 complexes, nor was cyclin D1 activity targeted by increased levels of CDKN1A in irradiated, logarithmically growing cultures under conditions where cyclin A activity was acutely repressed. Therefore, a radiation-induced permanent growth arrest is mediated by pathways that are distinct from those that cause cell cycle delay in damaged cells involving repression of cyclin-dependent kinase activity by CDKN1A.  相似文献   

12.
The tumor suppressor protein PTEN is mutated in glioblastoma multiform brain tumors, resulting in deregulated signaling through the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB) pathway, which is critical for maintaining proliferation and survival. We have examined the relative roles of the two major phospholipid products of PI3K activity, phosphatidylinositol 3,4-biphosphate [PtdIns(3,4)P2] and phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], in the regulation of PKB activity in glioblastoma cells containing high levels of both of these lipids due to defective PTEN expression. Reexpression of PTEN or treatment with the PI3K inhibitor LY294002 abolished the levels of both PtdIns(3, 4)P2 and PtdIns(3,4,5)P3, reduced phosphorylation of PKB on Thr308 and Ser473, and inhibited PKB activity. Overexpression of SHIP-2 abolished the levels of PtdIns(3,4,5)P3, whereas PtdIns(3,4)P2 levels remained high. However, PKB phosphorylation and activity were reduced to the same extent as they were with PTEN expression. PTEN and SHIP-2 also significantly decreased the amount of PKB associated with cell membranes. Reduction of SHIP-2 levels using antisense oligonucleotides increased PKB activity. SHIP-2 became tyrosine phosphorylated following stimulation by growth factors, but this did not significantly alter its phosphatase activity or ability to antagonize PKB activation. Finally we found that SHIP-2, like PTEN, caused a potent cell cycle arrest in G(1) in glioblastoma cells, which is associated with an increase in the stability of expression of the cell cycle inhibitor p27(KIP1). Our results suggest that SHIP-2 plays a negative role in regulating the PI3K-PKB pathway.  相似文献   

13.
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

14.
15.
16.
17.
18.
Inactivation of the Rb-mediated G1 control pathway is a common event found in many types of human tumors. To test how the Rb pathway interacts with other pathways in tumor suppression, we characterized mice with mutations in both the cyclin-dependent kinase (CDK) inhibitor p18 Ink4c and the lipid phosphatase Pten, which regulates cell growth. The double mutant mice develop a wider spectrum of tumors, including prostate cancer in the anterior and dorsolateral lobes, with nearly complete penetrance and at an accelerated rate. The remaining wild-type allele of Pten was lost at a high frequency in Pten+/- cells but not in p18+/- Pten+/- or p18-/- Pten+/- prostate tumor cells, nor in other Pten+/- tumor cells, suggesting a tissue- and genetic background-dependent haploinsufficiency of Pten in tumor suppression. p18 deletion, CDK4 overexpression, or oncoviral inactivation of Rb family proteins caused activation of Akt/PKB that was recessive to the reduction of PTEN activity. We suggest that p18 and Pten cooperate in tumor suppression by constraining a positive regulatory loop between cell growth and cell cycle control pathways.  相似文献   

19.
Following DNA damage, human cells undergo arrests in the G(1) and G(2) phases of the cell cycle and a simultaneous arrest in cell size. We previously demonstrated that the cell size arrest can be uncoupled from the cell cycle arrest by mutational inactivation of the PTEN tumor suppressor gene. Here we show that the cell size checkpoint is inducible by DNA-damaging chemotherapeutic agents as well as by ionizing radiation and is effectively regulated by PTEN but not by its oncogenic counterpart, PIK3CA. Mutational analysis of PTEN and pharmacological inhibition of Akt revealed that modulation of Akt phosphorylation is unnecessary for cell size checkpoint control. To discover putative PTEN regulators and/or effectors involved in size checkpoint control, we employed a novel endogenous epitope tagging (EET) approach, which revealed that endogenous PTEN interacts at the membrane with an actin-remodeling complex that includes actin, gelsolin, and EPLIN. Pharmacological inhibition of actin remodeling in PTEN(+/+) cells recapitulated the lack of size checkpoint control seen in PTEN(-/-) cells. Taken together, these results provide further support for the existence of a DNA damage-inducible size checkpoint that is regulated by a major tumor suppressor, and they provide a novel Akt-independent mechanism by which PTEN controls cell size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号