首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTEN is a tumor suppressor frequently inactivated in brain, prostate, and uterine cancers that acts as a phosphatase on phosphatidylinositol-3,4,5-trisphosphate, antagonizing the activity of the phosphatidylinositol 3'-OH kinase. PTEN manifests its tumor suppressor function in most tumor cells by inducing G(1)-phase cell cycle arrest. To study the mechanism of cell cycle arrest, we established a tetracycline-inducible expression system for PTEN in cell lines lacking this gene. Expression of wild-type PTEN but not of mutant forms unable to dephosphorylate phosphoinositides reduced the expression of cyclin D1. Cyclin D1 reduction was accompanied by a marked decrease in endogenous retinoblastoma (Rb) protein phosphorylation on cyclin D/CDK4-specific sites, showing an early negative effect of PTEN on Rb inactivation. PTEN expression also prevented cyclin D1 from localizing to the nucleus during the G(1)- to S-phase cell cycle transition. The PTEN-induced localization defect and the cell growth arrest could be rescued by the expression of a nucleus-persistent mutant form of cyclin D1, indicating that an important effect of PTEN is at the level of nuclear availability of cyclin D1. Constitutively active Akt/PKB kinase counteracted the effect of PTEN on cyclin D1 translocation. The data are consistent with an oncogenesis model in which a lack of PTEN fuels the cell cycle by increasing the nuclear availability of cyclin D1 through the Akt/PKB pathway.  相似文献   

2.
3.
Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations.  相似文献   

4.
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.  相似文献   

5.
Insulin-like growth factor I (IGF-I) protects cells from apoptosis primarily through the action of phosphatidylinositol-3 kinase and the downstream serine/threonine kinase Akt. The PTEN gene product, a protein which dephosphorylates phosphatidylinositol lipids, prevents activation of Akt and regulates several cellular functions, including cell cycle progression, cell migration, and survival from apoptosis. In this study, PTEN overexpression decreases IGF-I-induced Akt activity, enhances serum withdrawal-induced apoptosis, and decreases IGF-I protection and cell growth in SHEP cells. The PTEN lipid phosphatase mutant G129E fails to inhibit IGF-I-stimulated Akt activity and protection from apoptosis. The C124S mutation, which abolishes both lipid and protein phosphatase activity, fails to inhibit Akt activity and IGF-I protection against hyperosmotic-induced apoptosis but still inhibits growth and IGF-I protection against serum withdrawal-induced apoptosis. These data suggest a role for PTEN in modulating the effect of IGF-I on Akt activity, neuroblastoma cell growth, and protection against apoptotic stimuli.  相似文献   

6.
Following DNA damage, human cells undergo arrests in the G(1) and G(2) phases of the cell cycle and a simultaneous arrest in cell size. We previously demonstrated that the cell size arrest can be uncoupled from the cell cycle arrest by mutational inactivation of the PTEN tumor suppressor gene. Here we show that the cell size checkpoint is inducible by DNA-damaging chemotherapeutic agents as well as by ionizing radiation and is effectively regulated by PTEN but not by its oncogenic counterpart, PIK3CA. Mutational analysis of PTEN and pharmacological inhibition of Akt revealed that modulation of Akt phosphorylation is unnecessary for cell size checkpoint control. To discover putative PTEN regulators and/or effectors involved in size checkpoint control, we employed a novel endogenous epitope tagging (EET) approach, which revealed that endogenous PTEN interacts at the membrane with an actin-remodeling complex that includes actin, gelsolin, and EPLIN. Pharmacological inhibition of actin remodeling in PTEN(+/+) cells recapitulated the lack of size checkpoint control seen in PTEN(-/-) cells. Taken together, these results provide further support for the existence of a DNA damage-inducible size checkpoint that is regulated by a major tumor suppressor, and they provide a novel Akt-independent mechanism by which PTEN controls cell size.  相似文献   

7.
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family-interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1(-/-) fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.  相似文献   

8.
Certain forms of hexavalent chromium [Cr(VI)] are human carcinogens. Our recent work has shown that a broad range protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SOV), abrogated both Cr(VI)-induced growth arrest and clonogenic lethality. Notably, SOV enhanced Cr(VI) mutation frequency, ostensibly through forced survival of genetically damaged cells. In the present study, co-treatment with this PTP inhibitor bypassed the Cr(VI)-induced G1/S checkpoint arrest in diploid human lung fibroblasts (HLF). Moreover, the PTP inhibitor abrogated the Cr(VI)-induced decrease in the expression of key effectors of the G1/S checkpoint [Cyclin D1, phospho Ser 807/811 Rb (pRB), p27]. Cr(VI)-induced G1 arrest was associated with the cytoplasmic appearance of pRb and the nuclear localization of p27, both of which were reversed by the PTP inhibitor. The PTP inhibitor’s reversal of G1/S checkpoint effector localization after Cr exposure was found to be Akt1-dependent, as this was abrogated by transfection with either akt1 siRNA or an Akt1-kinase dead plasmid. Furthermore, Akt1 activation alone was sufficient to induce G1/S checkpoint bypass and to prevent Cr(VI)-induced changes in pRb and p27 localization. In conclusion, this work establishes Akt1 activation to be both sufficient to bypass the Cr(VI)-induced G1/S checkpoint, as well as necessary for the observed PTP inhibitor effects on key mediators of the G1/S transition. The potential for Akt to bypass G1/S checkpoint arrest in the face of genotoxic damage could increase genomic instability, which is a hallmark of neoplastic progression.  相似文献   

9.
As a dual‐specificity phosphatase catalyzing the dephosphorylation of phosphatidylinositols and protein substrates, PTEN is critically involved in the nervous system development. However, the regulatory role of PTEN in neurite outgrowth is still controversial, and the downstream signaling events remain elusive. Here, we show that PTEN knockdown promoted the proliferation and survival but not the neurite outgrowth of rat pheochromocytoma PC12 cells when exposed to nerve growth factor (NGF). In contrast, selective PTEN silencing in differentiating PC12 cells that express nestin significantly facilitated neurite elongation. Elevated Akt and Erk1/2 phosphorylation was involved in accelerated NGF‐induced neurite development of PC12 cells following PTEN knockdown. Discriminated roles of the lipid phosphatase and protein phosphatase activities of PTEN in neurite development, as well as the detailed molecular profiles affected by these phosphatase activities, were defined by restored expression of a lipid phosphatase‐deficient PTEN mutant following endogenous PTEN silencing in PC12 cells. Our study suggests an overall inhibitory effect of PTEN in neurite development reconciled by a probably indispensable role of this phosphatase in the initiation of PC12 cell differentiation. J. Cell. Biochem. 111: 1390–1400, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Defects in the PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor gene have been found in many human cancers including breast and prostate. Here we show that PTEN suppresses androgen receptor (AR) activity via a phosphatidylinositol-3-OH kinase/Akt-independent pathway in the early passage numbers prostate cancer LNCaP cells. We provide the direct links between PTEN and androgen/AR signaling by demonstrating that AR directly interacts with PTEN. The interaction between PTEN and AR inhibits the AR nuclear translocation and promotes the AR protein degradation that result in the suppression of AR transactivation and induction of apoptosis. The minimum interaction peptide within AR (amino acids 483-651) disrupts the interaction of PTEN with AR and reduces the PTEN effect on AR transactivation and apoptosis. Genetic approaches using PTEN-null mouse embryonic fibroblasts (MEFs) further demonstrate that both AR expression and AR activity were much higher in PTEN-null MEFs than wild-type MEFs, and reintroducing PTEN into PTEN-null MEFs dramatically reduced AR protein levels and AR activity. Interestingly, we also found that PTEN could suppress AR activity via the phosphatidylinositol-3-OH kinase/Akt-dependent pathway in the higher passage number LNCaP cells, because restoration of Akt activity blocks the effect of PTEN on AR activity. Together, these contrasting PTEN effects on AR activity in the same prostate cancer cell line with different passage numbers suggest that PTEN, via distinct mechanisms, differentially regulates AR in various stages of prostate cancers.  相似文献   

11.
PTEN, mutated in a variety of human cancers, is a dual specificity protein phosphatase and also possesses D3-phosphoinositide phosphatase activity on phosphatidylinositol 3,4,5-tris-phosphate (PIP(3)), a product of phosphatidylinositol 3-kinase. This PIP(3) phosphatase activity of PTEN contributes to its tumor suppressor function by inhibition of Akt kinase, a direct target of PIP(3). We have recently shown that Akt regulates PDGF-induced DNA synthesis in mesangial cells. In this study, we demonstrate that expression of PTEN in mesangial cells inhibits PDGF-induced Akt activation leading to reduction in PDGF-induced DNA synthesis. As a potential mechanism, we show that PTEN inhibits PDGF-induced protein tyrosine phosphorylation with concomitant dephosphorylation and inactivation of tyrosine phosphorylated and activated PDGF receptor. Recombinant as well as immunopurified PTEN dephosphorylates autophosphorylated PDGF receptor in vitro. Expression of phosphatase deficient mutant of PTEN does not dephosphorylate PDGF-induced tyrosine phosphorylated PDGF receptor. Rather its expression increases tyrosine phosphorylation of PDGF receptor. Furthermore, expression of PTEN attenuated PDGF-induced signal transduction including phosphatidylinositol 3-kinase and Erk1/2 MAPK activities. Our data provide the first evidence that PTEN is physically associated with platelet-derived growth factor (PDGF) receptor and that PDGF causes its dissociation from the receptor. Finally, we show that both the C2 and tail domains of PTEN contribute to binding to the PDGF receptor. These data demonstrate a novel aspect of PTEN function where it acts as an effector for the PDGF receptor function and negatively regulates PDGF receptor activation.  相似文献   

12.
Deregulation of PTEN/Akt signalling has been recently implicated in the pathogenesis of Alzheimer's disease (AD), but the effects on the molecular processes underlying AD pathology have not yet been fully described. Here we report that overexpression of PTEN reduces tau phosphorylation in CHO cells. This effect was abrogated by mutant PTEN constructs with either a catalytically inactive point mutation (C124S) or with only inactive lipid phosphatase activity (G129E), suggesting an indirect, lipid phosphatase-dependent process. The predominant effects of PTEN on tau appeared to be mediated by reducing ERK1/2 activity, but were independent of Akt, GSK-3, JNK and the tau phosphatases PP1 and PP2A. Our studies provide evidence for an effect of PTEN on the phosphorylation of tau in AD pathogenesis, and provide some insight into the mechanisms through which deregulation of PTEN may contribute towards the progression of tauopathy.  相似文献   

13.
14.
15.
PTEN-mediated Akt activation in human neocortex during prenatal development   总被引:2,自引:1,他引:1  
Akt is a crucial factor for cell survival and migration. Phosphatase and tensin (PTEN) negatively regulates cell growth and survival by inhibiting PI3K-dependent signaling. PTEN also blocks Akt phosphorylation, a main downstream molecule of PI3K cascade. So far, no studies have shown PTEN expression and Akt phosphorylation levels in the developing human neocortex. Our hypothesis is that spatial and temporal expression of PTEN is likely to modulate developing human brain cortical modeling by regulating Akt activation. Therefore, our aim is to analyze the expression pattern of PTEN and phospho-Akt levels using immunohistochemistry, Western blot, and semiquantitative analysis in the developing human neocortex (n=13 fetuses from first, second, and third trimesters). PTEN expression was decreased parallel to development, but some cells revealed strong nuclear immunoreactivity in the developing neocortex while the active Akt level was increased. Double immunohistochemistry was performed for proliferating cell nuclear antigen (PCNA)-Tuj1 (as neuronal marker) and PCNA-GFAP (Glial marker) to the subsequent sections of PTEN and Akt-stained slides. PCNA (+) cells were mostly positive for glial fibrillary acidic protein (GFAP) and correlated with active-Akt immunoreactivity. Our results suggest that Akt-mediated signaling plays an active role in cell migration, survival, and cerebral cortical modeling throughout prenatal life and that PTEN is the most likely protein to regulate this signaling.  相似文献   

16.
BACKGROUND: Phosphatase and tensin homolog (PTEN) mediates many of its effects on proliferation, growth, survival, and migration through its PtdIns(3,4,5)P(3) lipid phosphatase activity, suppressing phosphoinositide 3-kinase (PI3K)-dependent signaling pathways. PTEN also possesses a protein phosphatase activity, the role of which is less well characterized. RESULTS: We have investigated the role of PTEN in the control of cell migration of mesoderm cells ingressing through the primitive streak in the chick embryo. Overexpression of PTEN strongly inhibits the epithelial-to-mesenchymal transition (EMT) of mesoderm cells ingressing through the anterior and middle primitive streak, but it does not affect EMT of cells located in the posterior streak. The inhibitory activity on EMT is completely dependent on targeting PTEN through its C-terminal PDZ binding site, but can be achieved by a PTEN mutant (PTEN G129E) with only protein phosphatase activity. Expression either of PTEN lacking the PDZ binding site or of the PTEN C2 domain, or inhibition of PI3K through specific inhibitors, does not inhibit EMT, but results in a loss of both cell polarity and directional migration of mesoderm cells. The PTEN-related protein TPTE, which normally lacks any detectable lipid and protein phosphatase activity, can be reactivated through mutation, and only this reactivated mutant leads to nondirectional migration of these cells in vivo. CONCLUSIONS: PTEN modulates cell migration of mesoderm cells in the chick embryo through at least two distinct mechanisms: controlling EMT, which involves its protein phosphatase activity; and controlling the directional motility of mesoderm cells, through its lipid phosphatase activity.  相似文献   

17.
The targeting of the tumor suppressor PTEN protein to distinct subcellular compartments is a major regulatory mechanism of PTEN function, by controlling its access to substrates and effector proteins. Here, we investigated the molecular basis and functional consequences of PTEN nuclear/cytoplasmic distribution. PTEN accumulated in the nucleus of cells treated with apoptotic stimuli. Nuclear accumulation of PTEN was enhanced by mutations targeting motifs in distinct PTEN domains, and it was dependent on an N-terminal nuclear localization domain. Coexpression of a dominant negative Ran GTPase protein blocked PTEN accumulation in the nucleus, which was also affected by coexpression of importin alpha proteins. The lipid- and protein-phosphatase activity of PTEN differentially modulated PTEN nuclear accumulation. Furthermore, catalytically active nuclear PTEN enhanced cell apoptotic responses. Our findings indicate that multiple nuclear exclusion motifs and a nuclear localization domain control PTEN nuclear localization by a Ran-dependent mechanism and suggest a proapoptotic role for PTEN in the cell nucleus.  相似文献   

18.
Ueno S  Kono R  Iwao Y 《Developmental biology》2006,297(1):274-283
PTEN phosphatase mediates several developmental cues involving cell proliferation, growth, death, and migration. We investigated the function of the PTEN gene at the transition from the cell proliferation state to morphogenesis around the midblastula transition (MBT) and gastrulation in Xenopus embryos. An immunoblotting analysis indicated that PTEN expresses constantly through embryogenesis. By up- or down-regulating PTEN activity using overexpression of the active form or C terminus of PTEN before MBT, we induced elongation of the cell cycle time just before MBT or maintained its speed even after MBT, respectively. The disruption of the cell cycle time by changing the activity of PTEN delayed gastrulation after MBT. In addition, PTEN began to localize to the plasma membranes and nuclei at MBT. Overexpression of a membrane-localizing mutant of PTEN caused dephosphorylation of Akt, whereas overexpression of the C terminus of PTEN caused phosphorylation of Akt and inhibited the localization of EGFP-PTEN to the plasma membranes and nuclei. These results indicate that an appropriate PTEN activity, probably regulated by its differential localization, is necessary for coordinating cell proliferation and early morphogenesis.  相似文献   

19.
The tumor suppressor PTEN is a dual protein and phosphoinositide phosphatase that negatively controls the phosphatidylinositol (PI) 3-kinase/protein kinase B (Akt/PKB) signaling pathway. Interleukin-13 via the activation of the class I PI 3-kinase has been shown to inhibit the macroautophagic pathway in the human colon cancer HT-29 cells. Here we demonstrate that the wild-type PTEN is expressed in this cell line. Its overexpression directed by an inducible promoter counteracts the interleukin-13 down-regulation of macroautophagy. This effect was dependent upon the phosphoinositide phosphatase activity of PTEN as determined by using the mutant G129E, which has only protein phosphatase activity. The role of Akt/PKB in the signaling control of interleukin-13-dependent macroautophagy was investigated by expressing a constitutively active form of the kinase ((Myr)PKB). Under these conditions a dramatic inhibition of macroautophagy was observed. By contrast a high rate of autophagy was observed in cells expressing a dominant negative form of PKB. These data demonstrate that the signaling control of macroautophagy overlaps with the well known PI 3-kinase/PKB survival pathway and that the loss of PTEN function in cancer cells inhibits a major catabolic pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号