首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oxidative stress is a major source of injury from cerebral ischemia and reperfusion. We hypothesized that a catalytic antioxidant AEOL 10150 [manganese (III) meso-tetrakis (di-N-ethylimidazole) porphyrin] would attenuate changes in brain gene expression in a mouse model of transient middle cerebral artery occlusion (MCAO). C57BL/6J mice were subjected to either sham surgery or 60 min of right MCAO. AEOL 10150 or phosphate-buffered saline was given intravenously 5 min after onset of reperfusion (n = 6 per group). Six hours later, parenchyma within the MCA distribution was harvested. RNA from the six brains in each group was pooled and mRNA expression determined using an Affymetrix murine MG_U74A v. 2.0 expression microarray. Each experiment was performed three times. The largest changes in expression occurred in stress response and inflammatory genes such as heat shock protein, interleukin-6, and macrophage inflammatory protein-2. Treatment with AEOL 10150 attenuated only the increase in expression of inflammatory genes. This suggests that AEOL 10150 protects brain by attenuating the immune response to ischemia and reperfusion.  相似文献   

3.
4.
Recent studies have shown 5-hydroxymethyl-2-furfural (5-HMF) has favorable biological effects, and its neuroprotection in a variety of neurological diseases has been noted. Our previous study showed that treatment of 5-HMF led to protection against permanent global cerebral ischemia. However, the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the neuroprotective effect of 5-HMF and elucidate the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway mechanism in the striatum after transient global cerebral ischemia. C57BL/6 mice were subjected to bilateral common carotid artery occlusion for 20 min and sacrificed 24 h after reperfusion. 5-HMF (12 mg/kg) or an equal volume of vehicle was intraperitoneally injected 30 min before ischemia and 5 min after the onset of reperfusion. At 24 h after reperfusion, neurological function was evaluated by neurological disability status scale, locomotor activity test and inclined beam walking test. Histological injury of the striatum was observed by cresyl violet staining and terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) staining. Oxidative stress was evaluated by the carbonyl groups introduced into proteins, and malondialdehyde (MDA) levels. An enzyme-linked immunosorbent assay (ELISA)-based measurement was used to detect Nrf2 DNA binding activity. Nrf2 and its downstream ARE pathway protein expression such as heme oxygenase-1, NAD (P)H:quinone oxidoreductase 1, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modulatory subunit were detected by western blot. Our results showed that 5-HMF treatment significantly ameliorated neurological deficits, reduced brain water content, attenuated striatum neuronal damage, decreased the carbonyl groups and MDA levels, and activated Nrf2/ARE signaling pathway. Taken together, these results demonstrated that 5-HMF exerted significant antioxidant and neuroprotective effects following transient cerebral ischemia, possibly through the activation of the Nrf2/ARE signaling pathway.  相似文献   

5.

Background

Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion.

Methodology/Principal Findings

We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model.

Conclusion/Significance

CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.  相似文献   

6.
The neuroprotective effects of estrogen were studied in the ischemic model mice by 90 min transient unilateral middle cerebral artery occlusion (MCAO) followed by 22.5 h reperfusion. The total infarct size in C57BL/6 female mice after MCAO and reperfusion was significantly smaller than that in male mice. Intraperitoneal injection of estrogen after the start of reperfusion significantly reduced the infarct volume in the male mice. However, no significant gender difference was found in total infarct size in gamma protein kinase C (PKC)-knockout mice, suggesting that the neuroprotective effects of estrogen are due to the activation of a specific subtype of PKC, gammaPKC, a neuron-specific PKC subtype, in the brain. We demonstrated that exogenous estrogen-induced neuroprotection was attenuated in gammaPKC-knockout mice. Immunocytochemical study showed that gammaPKC was translocated to nerve fiber-like structures when observed shortly after MCAO and reperfusion. We also visualized the rapid and reversible translocation of gammaPKC-GFP (green fluorescent protein) by estrogen stimulation in living CHO-K1 cells. These results suggest that the activation of gammaPKC through the G-protein-coupled estrogen receptors on the plasma membrane is involved in the estrogen-induced neuroprotection against focal brain ischemia.  相似文献   

7.
BackgroundOxidative stress and frequently unwanted alterations in mitochondrial structure and function are key aspects of the pathological cascade in transient focal cerebral ischemia. Chikusetsu saponin V (CHS V), a major component of saponins from Panax japonicas, can attenuate H2O2-induced oxidative stress in SH-SY5Y cells.PurposeThe aim of the present study was to investigate the neuroprotective effects and the possible underlying mechanism of CHS V on transient focal cerebral ischemia/reperfusion.MethodsMice with middle cerebral artery occlusion (MCAO) and cultured cortical neurons exposed to oxygen glucose deprivation (OGD) were used as in vivo and in vitro models of cerebral ischemia, respectively. The neurobehavioral scores, infarction volumes, H&E staining and some antioxidant levels in the brain were evaluated. The occurrence of neuronal death was estimated. Total and mitochondrial reactive oxygen species (ROS) levels, as well as mitochondrial potential were measured using flow cytometry analysis. Mitochondrial structure and respiratory activity were also examined. Protein levels were investigated by western blotting and immunohistochemistry.ResultsCHS V effectively attenuated cerebral ischemia/reperfusion (CI/R) injury, including improving neurological deficits, shrinking infarct volume and reducing the number of apoptotic cells. Furthermore, CHS V treatment remarkably increased antioxidant levels and reduced ROS levels and mitochondrial damage by enhancing the expression and deacetylation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by activating AMPK and SIRT-1, respectively.ConclusionOur data demonstrated that CHS V prevented CI/R injury by suppressing oxidative stress and mitochondrial damage through the modulation of PGC-1α with AMPK and SIRT-1.  相似文献   

8.
Green tea polyphenol (?)-epigallocatechin gallate (EGCG) has been reported to reduce neuronal damage after cerebral ischemic insult. EGCG is known to reduce matrix metalloproteinase (MMP) activity. MMP can play an important role in the pathophysiology of neurological disorders including cerebral ischemia. The purpose of the current study was to investigate whether EGCG shows an inhibitory effect on MMP activity and neural tissue damage following transient focal cerebral ischemia. In the present study, C57BL/6 mice were subjected to 80 min of focal ischemia induced by middle cerebral artery occlusion (MCAO). Animals were killed 24 h after ischemia. EGCG (50 mg/kg) was administered intraperitoneally immediately after ischemia. Gelatin gel zymography showed an increase in the active form of MMP-9 after ischemia. EGCG reduced ischemia-induced up-regulation of the active form of MMP-9. In in situ zymography, EGCG reduced up-regulation of gelatinase activity induced by cerebral ischemia. Co-incubation with EGCG reduced gelatinase activity directly in postischemic brain section. In 2,3,5-triphenyltetrazolium chloride (TTC) assay, brain infarction was remarkable in the middle cerebral artery territory after focal cerebral ischemia. In EGCG-treated mice, infarct volume was significantly reduced compared with vehicle-treated mice. These results demonstrate that EGCG, a green tea polyphenol, may reduce up-regulation of MMP-9 activity and neuronal damage following transient focal cerebral ischemia. In addition to its antioxidant effect, MMP-9 inhibition might be a possible mechanism potentially involved in the neuroprotective effect of a green tea polyphenol, EGCG.  相似文献   

9.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

10.
Inflammation injury plays a key role in the process of cerebral injury induced by ischemia/reperfusion (I/R). Thus, we studied the potential of astragaloside IV, one of the major and active components of the astragalus membranaceous, to protect rat against cerebral inflammation injury elicited by focal cerebral ischemia and reperfusion and related protective mechanisms. The rat model was induced by intraluminal occlusion of the right middle cerebral artery with reperfusion. Animals received astragaloside IV (10 or 20 mg/kg) injections when reperfusion was began to. Neurobehavioral evaluation and infarct assessment were studied. Myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured by enzyme-linked immunosorbent assay (ELISA). The rates of CD11b/CD18-positive neutrophils were analyzed via flow cytometry. Intercellular adhesion molecule-1 (ICAM-1) and nuclear factor κB (NF-κB) were measured by immunohistochemistry and Western blot. Astragaloside IV improved neurological outcome and reduced infarct volume at 24 h after reperfusion. The protective effect was achieved by preventing neutrophils accumulation in the brain parenchyma demonstrated by significantly reducing the concentration of MPO in brain tissue. Astragaloside IV exerts the protection through remarkably decreasing the percentage of CD11b/CD18-positive neutrophils and down-regulating the expression of intercellular adhesion molecule-1 (ICAM-1), which is partly achieved by strongly attenuating the production of TNF-α and IL-1β and inhibiting level of nuclear factor-κB (NF-κB). We propose an anti-inflammatory mechanism evoked by astragaloside IV by suppression of neutrophils adhesion-related molecules, which exerts neuroprotection against I/R injury.  相似文献   

11.
Wang C  Pei A  Chen J  Yu H  Sun ML  Liu CF  Xu X 《Journal of neurochemistry》2012,121(6):1007-1013
Previous studies have demonstrated that a natural coumarin compound esculetin (Esc) possesses antioxidant, anti-tumor, and anti-inflammation activities and rescues cultured primary neurons from NMDA toxicity. In this study, we investigated the neuroprotective effects of Esc on cerebral ischemia/reperfusion (I/R) injury in a middle cerebral artery occlusion model in mice. Esc (20 μg) was administered intracerebroventricularly at 30 min before ischemia. We found that Esc significantly reduced infarct volume and decreased neurological deficit scores after 75 min of ischemia and 24 h of reperfusion. Post-treatment of Esc still provided neuroprotection even when Esc was administered after 4 h of reperfusion. Our data also indicated that intraperitoneal administration of Esc showed protective effects on cerebral I/R injury in a dose-dependent manner. We further explored the protective mechanisms of Esc on cerebral I/R injury and found that Esc decreased cleaved caspase 3 level, a marker of apoptosis. Finally, our data demonstrated that Esc exerted its anti-apoptotic activity by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax, two apoptosis-related proteins. Because of its clinical use as an anticoagulant and its safety profile, Esc may have a therapeutic potential for the treatment of stroke in the future clinical trials.  相似文献   

12.
目的: 评估二肽基肽酶4(DPP-4)抑制剂利格列汀对小鼠脑缺血/再灌注(I/R)损伤的神经保护作用。方法: BALB/c小鼠随机分为Sham组、I/R组和利格列汀(2.5、5和10 mg/kg) +I/R组,每组均为8只小鼠。不同剂量利格列汀组小鼠均在I/R前3周连续灌胃给药。采用小鼠脑中动脉闭塞(MCAO)1 h诱导I/R损伤模型,再灌注24 h评估神经功能缺损(n=8)和及梗死体积(n=4);再灌注48 h处死小鼠,检测脑组织中谷胱甘肽(GSH)、丙二醛(MDA)、磷酸化肌醇3激酶(PI3K)、磷酸化蛋白激酶 B(p-Akt)和雷帕霉素靶蛋白(mTOR)含量(n=4)。结果: 与I/R组相比,利他列汀预处理组小鼠再灌注24 h后,神经功能缺损评分和梗死体积明显降低(P<0.05);小鼠再灌注48 h后,脑内MDA含量明显降低(P<0.05),而GSH、PI3K、p-Akt和mTOR水平明显升高(P<0.05)。结论: 利格列汀对I/R小鼠具有神经保护作用,可能是通过激活PI3K/AKT/mTOR通路发挥的作用。  相似文献   

13.
目的:探讨毛蕊异黄酮抗脑缺血再灌注损伤的作用是否与抑制calpain-1的表达有关。方法:将SD大鼠随机分为假手术组、模型组以及药物组,采用线栓法建立大鼠大脑中动脉阻断(MCAO)模型,于缺血再灌注前30 min腹腔注射给予20 mg/kg毛蕊异黄酮或等体积的溶剂。再灌注24 h后,行神经功能学评分、脑梗死面积以及神经元凋亡检测;再灌注12 h、24 h时,采用免疫组化和蛋白印迹技术检测大鼠脑皮层calpain-1的表达。结果:与假手术组大鼠比较,MCAO模型组大鼠再灌注24 h后神经功能学评分、梗死面积、神经元凋亡率及calpain-1的表达均明显升高(P0.05),而毛蕊异黄酮能够降低模型组大鼠再灌注24 h后神经功能学评分、梗死面积、神经元凋亡率以及calpain-1的表达(P0.05)。结论:毛蕊异黄酮可能通过抑制calpain-1的表达发挥抗脑缺血再灌注损伤作用。  相似文献   

14.
15.
16.
目的研究白鲜皮水提物对大鼠心肌缺血再灌注损伤的保护作用。方法 Wistar大鼠随机分为假手术组,模型组,阳性药组(地奥心血康)及白鲜皮低、中、高剂量组(白鲜皮水提物0.128、0.64、1.28 g/kg),每组6只。结扎冠状动脉左前降支制备大鼠心肌缺血再灌注损伤模型,观察给药后大鼠心电图ST段的改变,测量心肌梗死面积,观察大鼠心肌组织病理形态,检测大鼠血清CK,SOD活性、MDA含量。结果白鲜皮中、高剂量组给药后能明显减少心肌梗死面积,明显降低缺血30 min和再灌注120 min时ST段的抬高,并能降低大鼠血清中MDA含量,升高SOD活性,减少因缺血导致的心肌组织病理损害。结论白鲜皮水提物对大鼠心肌缺血再灌注损伤具有保护作用,其作用机制可能与保护心肌细胞功能、提高心肌抗氧化能力、清除氧自由基有关。  相似文献   

17.
摘要 目的:探讨星形胶质细胞糖原动员是否对大脑缺血再灌注损伤有神经保护作用。方法:研究构建了星形胶质细胞特异性糖原分解代谢关键酶糖原磷酸化酶(Glycogen phosphorylase, GP)过表达转基因小鼠(GFAP-GP),并通过免疫荧光染色对GP的含量进行验证。在小鼠大脑中动脉梗死/再通模型中,利用GFAP-GP小鼠促进再灌注后累积糖原的分解(糖原动员),通过三苯基氯化四氮唑(Triphenyl tetrazolium chloride, TTC)染色分析再灌注后GFAP-GP小鼠的脑梗死面积,Corner test和Grid-walking test检测再灌注后GFAP-GP小鼠的神经行为学功能。结果:GFAP-GP小鼠中GP的含量发生了明显的增加,再灌注后GFAP-GP小鼠与野生型小鼠相比,脑糖原含量明显降低,梗死明显减少,肢体感觉与运动功能明显改善。结论:星形胶质细胞糖原动员可改善大脑缺血再灌注损伤。  相似文献   

18.
Oxidative stress and inflammatory responses play a critical contributing factor in cerebral ischemia and reperfusion, which lead to lipid peroxidation and neuronal dysfunction that may represent a target for therapeutic intervention. The present study was aimed to elucidate the neuroprotective effect of tannic acid (TA), a natural polyphenol with potential antioxidant and antiinflammatory properties on middle cerebral artery occlusion (MCAO) model in rats. To test this hypothesis, male Wistar rats were pretreated with TA (50 mg/kg b.wt.) and then subjected to 2-h MCAO followed by 22 h of reperfusion. After 2-h MCAO/22-h reperfusion, neurological deficit, infarct sizes, activities of antioxidant enzymes, cytokine level, histology, and immunohistochemistry were used to analyze the expression of glial fibrillary acidic protein (GFAP) in ischemic brain. The pretreatment of TA showed a marked reduction in infarct size, improved neurological function, suppressed neuronal loss, and downregulated the GFAP expression in MCAO rats. A significantly depleted activity of antioxidant enzymes and content of glutathione in MCAO group were protected significantly in MCAO group pretreated with TA. Conversely, the elevated level of thiobarbituric acid reactive species and cytokines in MCAO group was attenuated significantly in TA-pretreated group when compared with MCAO group. The results indicated that TA protected the brain from damage caused by MCAO, and this effect may thorough diminish the oxidative stress and inflammatory responses.  相似文献   

19.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

20.
Self-reactive natural Abs initiate injury following ischemia and reperfusion of certain tissues, but their role in ischemic stroke is unknown. We investigated neoepitope expression in the postischemic brain and the role of natural Abs in recognizing these epitopes and mediating complement-dependent injury. A novel IgM mAb recognizing a subset of phospholipids (C2) and a previously characterized anti-annexin IV mAb (B4) were used to reconstitute and characterize injury in Ab-deficient Rag1(-/-) mice after 60 min of middle cerebral artery occlusion and reperfusion. Reconstitution with C2 or B4 mAb in otherwise protected Rag1(-/-) mice restored injury to that seen in wild-type (wt) mice, as demonstrated by infarct volume, demyelination, and neurologic scoring. IgM deposition was demonstrated in both wt mice and reconstituted Rag1(-/-) mice, and IgM colocalized with the complement activation fragment C3d following B4 mAb reconstitution. Further, recombinant annexin IV significantly reduced infarct volumes in wt mice and in Rag1(-/-) mice administered normal mouse serum, demonstrating that a single Ab reactivity is sufficient to develop cerebral ischemia reperfusion injury in the context of an entire natural Ab repertoire. Finally, C2 and B4 mAbs bound to hypoxic, but not normoxic, human endothelial cells in vitro. Thus, the binding of pathogenic natural IgM to postischemic neoepitopes initiates complement-dependent injury following murine cerebral ischemia and reperfusion, and, based also on previous data investigating IgM reactivity in human serum, there appears to be a similar recognition system in both mouse and man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号