首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATP hydrolysis rate and the ATP hydrolysis-linked proton translocation by the F0F1-ATPase of beef heart submitochondrial particles were examined in the presence of several divalent metal cations. All Me–ATP complexes tested sustained ATP hydrolysis, although to a different extent. However, only Mg- and Mn-ATP-dependent hydrolysis could sustain a high level of proton pumping activity, as determined by acridine fluorescence quenching. Moreover, the K m of the Me-ATP hydrolysis-induced proton pumping activity was very similar to the K m value of Me-ATP hydrolysis. Both oligomycin and DCCD caused the full recovery of the fluorescence, providing clear evidence for the association of Mg-ATP hydrolysis with proton translocation through the F0F1-ATPase complex. In contrast, with other Me-ATP complexes, including Ca-ATP as substrate, the proton pumping activity was undetectable, implicating an uncoupling nature for these substrates. Attempts to demonstrate the involvement of the subunit of the enzyme in the coupling mechanism failed, suggesting that the participation of at least the N-terminal segment of the subunit in the coupling mechanism of the mitochondrial enzyme is unlikely.  相似文献   

2.
Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase or F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane. Moreover, in a few cases, amino acid sequences exposed on a face of the membrane or buried inside the complex have been identified. Antibodies are very useful for detecting the role of each subunit, especially for those subunits which appear to have no direct involvement in the catalytic mechanism. Concerning the mechanisms, the availability of monoclonal antibodies which inhibit (or activate) ATP hydrolysis or ATP synthesis, which modify nucleotide binding or regulation of activities, which detect specific conformations, etc. brings many new ways of understanding the precise functions. The specific recognition by monoclonal antibodies on the subunit of epitopes in the proximity of, or in the catalytic site, gives information on this site. The use of anti- monoclonal antibodies has shown asymmetry of in the complex as already shown for . In addition, the involvement of with respect to nucleotide site cooperativity has been detected. Finally, the formation of F1F0-antibody complexes of various masses, seems to exclude the functional rotation of F1 around F0 during catalysis.Abbreviations IF1 natural protein inhibitor of the ATPase-ATP synthase - OSCP oligomycin sensitivity-conferring protein - DCCD dicyclohexylcarbodiimide - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoreses - F1 F1-ATPase, coupling factor F1 of ATPase - F1F0 F1F0-ATP synthase, ATPase-ATP synthase complex  相似文献   

3.
An intrinsic ATPase inhibitor inhibits the ATP-hydrolyzing activity of mitochondrial F1F0-ATPase and is released from its binding site on the enzyme upon energization of mitochondrial membranes to allow phosphorylation of ADP. The mitochondrial activity to synthesize ATP is not influenced by the absence of the inhibitor protein. The enzyme activity to hydrolyze ATP is induced by dissipation of the membrane potential in the absence of the inhibitor. Thus, the inhibitor is not responsible for oxidative phosphorylation, but acts only to inhibit ATP hydrolysis by F1F0-ATPase upon deenergization of mitochondrial membranes. The inhibitor protein forms a regulatory complex with two stabilizing factors, 9K and 15K proteins, which facilitate the binding of the inhibitor to F1F0-ATPase and stabilize the resultant inactivated enzyme. The 9K protein, having a sequence very similar to the inhibitor, binds directly to F1 in a manner similar to the inhibitor. The 15K protein binds to the F0 part and holds the inhibitor and the 9K protein on F1F0-ATPase even when one of them is detached from the F1 part.  相似文献   

4.
A short period of ischemia followed by reperfusion produces a state of affairs in which the cells' potential for surviving longer ischemia is enhanced. This is called ischemic preconditioning. The effects of preconditioning are also related to the reperfusion damage which ensues upon tissue oxygenation. The role of the cellular energy state in reperfusion damage remains an enigma, although ischemic preconditioning is known to trigger mechanisms which contribute to the prevention of unnecessary ATP waste. In some species up to 80% of ATP hydrolysis in ischemia can be attributed to mitochondrial F1-F0-ATPase (ATP synthase), and a role for its inhibitor protein (IF1) in ATP preservation has been proposed. Although originally regarded as limited to large animals with a slow heart beat, inhibition by IF1 is probably a universal phenomenon. Coincidentally with ATPase inhibition, the decline in cellular ATP slows down, but even so the difference in ATP concentration between preconditioned and non-conditioned hearts is still small at the final stages of a long ischemia, when the beneficial effect of preconditioning is observable, although the energy state during reperfusion remains low in hearts which do not recover.  相似文献   

5.
Exogenously administered adenosine agonist will protect myocardium against infarction during ischemia. However, long-term exposure to adenosine agonists is associated with loss of this protection. To determine why this protection is lost, isolated, perfused rabbit hearts were studied after administration of R(-)-N6-(2-phenylisopropyl)adenosine (PIA), 0.25 mg/h IP, for 3-4 days to intact animals. All hearts experienced 30 min of regional ischemia and 120 min of reperfusion. Control groups 1 and 2 were untreated. In group 1 this ischemia/reperfusion was the only intervention, whereas group 2 hearts were preconditioned with a cycle of 5 min global ischemia/10 min reperfusion preceding the 30 min regional ischemia. Groups 3-5 had been chronically exposed to PIA. Group 3 hearts had 1 preconditioning ischemia/reperfusion cycle before the prolonged ischemia. Group 4 received a 5 min infusion of 0.1 mol/L phenylephrine in lieu of global ischemia, whereas group 5 was instead treated with 1 mol/L carbachol. Infarct size averaged 32% of the risk zone in group 1, whereas ischemic preconditioning limited infarction to 8.2 in group 2. Prolonged exposure of group 3 hearts to PIA resulted in the inability of preconditioning with 5 min global ischemia to protect (28.7 ± 4.4% infarction). However, protection was restored by either phenylephrine, an agonist of 1-adrenergic receptors which couple to Gq and stimulate PKC, or carbachol, an agonist of M2-muscarinic receptors which couple instead to Gi as do adenosine A1 receptors (5.2 ± 1.7% and 9.2 ± 2.1% infarction, resp.). Therefore, cross tolerance to ischemic preconditioning develops after chronic PIA infusion. Since both the Gi and the PKC components of the preconditioning pathway were shown to be intact, tolerance must have been related to downregulation or desensitization of the A1 adenosine receptor.  相似文献   

6.
The effect of ATP on the fluorescence intensity of bovine heart F1-adenosinetriphosphatase labeled at its essential Lys with 7-chloro-4-nitro-2,1,3-benzoxadiazole (N-NBD-F1) has been examined in solutions containing different concentrations of ADP. The fluorescence of N-NBD-F1 is unaffected by ATP in the absence of ADP. But when increasing amounts of ATP are added to a solution of N-NBD-F1 containing 0.37 or 1.0 mM ADP, the fluorescence of N-NBD-F1 first decreases and then increases continually as the concentration of ATP is further raised. Parallel measurements of the suppression of the fluorescence of N-NBD-F1 and the inhibition of the ATPase activity of the unlabeled enzyme by ADP in the presence of ATP show a quantitative correlation between the changes in fluorescence and in ATPase activity. The data are consistent with the model for F1-ATPase with one principal catalytic subunit for ATP hydrolysis and synthesis, and two auxiliary subunits which control the conformation and hence the catalytic activity of through interaction between all the subunits.  相似文献   

7.
E. coli F1-ATPase has been studied mainly by the genetic approach. Mutations in either the or subunit modified the kinetics of multisite and uni-site hydrolysis of ATP. The mechanism of F1-ATPase and the essential amino acid residues of subunits are discussed.Abbreviations used: Pi, inorganic phosphate; DCCD, dicyclohexylcarbodiimide.  相似文献   

8.
The mitochondrial F1-ATPase inhibitor protein, IF1, binds to subunits of the F1-ATPase bothin vitro andin situ under nonenergizing conditions, i.e., under conditions that allow a net hydrolysis of ATP by the mitochondrial ATPase to take place. This reversible IF1 binding occurs in a wide variety of cell types including (anaerobic) baker's yeast cells and (ischemic) mammalian cardiomyocytes under conditions that limit oxidative phosphorylation. The binding of inhibitor results in a marked slowing of ATP hydrolysis by the undriven mitochondrial ATP synthase. An apparent main function of this reversible IF1 binding, at least in cells that undergo aerobic-anaerobic switching, is the mitigation of a wasteful hydrolysis of ATP produced by glycolysis during anoxic or ischemic intervals, by the mitochondrial ATPase. While this apparent main function is probably of considerable importance in cells that normally either can or must undergo aerobic-anaerobic switching such as baker's yeast cells and skeletal myocytes, one wonders why a full complement of IF1 has been retained in certain cells that normally do not undergo such aerobic-anaerobic switching, cells such as adult mammalian cardiomyocytes of many species. While some mammalian species have, indeed, not retained a functional complement of IF1 in their cardiomyocytes, those that have can benefit significantly from its presence during intervals of myocardial ischemia.This mini-review is dedicated to the memory of Professor Efraim Racker.  相似文献   

9.
The structural and functional connection between the peripheral catalytic F1 sector and theproton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. Theobservations examined show that the N-terminus of subunit , the carboxy-terminal and centralregion of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateralstalk, which connects the peripheries of F1 to F0 and surrounds the central element of thestalk, constituted by subunits and . The ATPase inhibitor protein (IF1) binds at one sideof the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The42L-58K segment of IF1, which is per se the most active domain of the protein, binds at thesurface of one of the three / pairs of F1, thus preventing the cyclic interconversion of thecatalytic sites required for ATP hydrolysis.  相似文献   

10.
A functional F0F1 ATP synthase that contains the endogenous inhibitor protein (F0F1I) was isolated by the use of two combined techniques [Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975).Biochemistry 14, 1727–1735; Dreyfus, G., Celis, H., and Ramirez, J. (1984).Anal. Biochem. 142, 215–220]. The preparation is composed of 18 subunits as judged by SDS-PAGE. A steady-state kinetic analysis of the latent ATP synthase complex at various concentrations of ATP showed aV max of 1.28mol min–1 mg–1, whereas theV max of the complex without the inhibitor was 8.3mol min–1 mg–1. In contrast, theK m for Mg-ATP of F0F1 I was 148M, comparable to theK m value of 142M of the F0F1 complex devoid of IF1. The hydrolytic activity of the F0F1I increased severalfold by incubation at 60C at pH 6.8, reaching a maximal ATPase activity of 9.5mol min–1 mg–1; at pH 9.0 a rapid increase in the specific activity of hydrolysis was followed by a sharp drop in activity. The latent ATP synthase was reconstituted into liposomes by means of a column filtration method. The proteoliposomes showed ATP-Pi exchange activity which responded to phosphate concentration and was sensitive to energy transfer inhibitors like oligomycin and the uncouplerp-trifluoromethoxyphenylhydrazone.  相似文献   

11.
Yakov M. Milgrom 《BBA》2010,1797(10):1768-1774
The effect of inorganic phosphate (Pi) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F1-ATPase from beef heart mitochondria (ndMF1) has been investigated. It is shown for the first time that Pi decreases the apparent rate constant of uni-site ATP binding by ndMF1 3-fold with the Kd of 0.38 ± 0.14 mM. During uni-site ATP hydrolysis, Pi also shifts equilibrium between bound ATP and ADP + Pi in the direction of ATP synthesis with the Kd of 0.17 ± 0.03 mM. However, 10 mM Pi does not significantly affect ATP binding during multi-site catalysis.  相似文献   

12.
In liver mitochondria isolated from hypothyroid rats, the rate of ATP synthesis is lower than in mitochondria from normal rats. Oligomycin-sensitive ATP hydrolase activity and passive proton permeability were significantly lower in submitochondrial particles from hypothyroid rats compared to those isolated from normal rats. In mitochondria from hypothyroid rats, the changes in catalytic activities of F0F1-ATP synthase are accompanied by a decrease in the amount of immunodetected -F1, F01-PVP, and OSCP subunits of the complex. Northern blot hybridization shows a decrease in the relative cytosolic content of mRNA for -F1 subunit in liver of hypothyroid rats. Administration of 3,5,3-triodo-L-thyronine to the hypothyroid rats tends to remedy the functional and structural defects of F0F1-ATP synthase observed in the hypothyroid rats. The results obtained indicate that hypothyroidism leads to a decreased expression of F0F1-ATP synthase complex in liver mitochondria and this contributes to the decrease of the efficiency of oxidative phosphorylation.  相似文献   

13.
A method has been developed to allow the level of F0F1ATP synthase capacity and the quantity of IF1 bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF1 content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF1 antibodies.Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF1 content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF1. In addition, both in vivo and in vitro, 1.3-1.4 mol of IF1 was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF1 in the F0 sector.  相似文献   

14.
Temperature modulates both myocardial energy requirements and production. We have previously demonstrated that myocardial protection induced by hypothermic adaptation preserves expression of genes regulating heat shock protein and the nuclear-encoded mitochondrial proteins, the adenine nucleotide translocator isoform 1 (ANT1), and the β subunit of F1-ATPase (βF1-ATPase). This preservation is associated with a reduction in ATP depletion similar to that noted in cardioplegic arrested hearts preserved at a critical temperature (30°C) or below. We tested the hypothesis that expression of these genes may also be subject to this temperature threshold phenomenon. Isolated perfused rabbit hearts were subjected to ischemic cardioplegic arrest at 4, 30, or 34°C for 120 min. Cardiac function indices and steady-state mRNA levels for ANT1, βF1-ATPase, and HSP70-1 were measured prior to ischemia (B) and after 45 min of reperfusion. Cardiac function was significantly depressed in the 34°C group. Ischemia at 34°C reduced steady-state mRNA levels for ANT1and βF1-ATPase from B, but these levels were similarly preserved at 4 and 30°C. HSP70-1 levels were mildly elevated (fourfold) above B to similar levels at all three temperatures. These results indicate that mRNA expression for ANT1and βF1-ATPase is specifically preserved in a pattern consistent with the temperature threshold phenomenon. HSP70-1 expression is not influenced by ischemic temperature. Preservation of gene expression for these mitochondrial proteins implies that signaling for mitochondrial biogenesis or resynthesis is maintained after ischemic insult.  相似文献   

15.
Recent studies of chemically modified F1-ATPases have provided new information that requires a revision of our thinking on their catalytic mechanism. One of the subunits in F1-ATPase is distinguishable from the other two both structurally and functionally. The catalytic site and regulatory site of the same subunit are probably sufficiently close to each other, and the interaction between the various catalytic and regulatory sites are probably sufficiently strong to raise the uni-site rate of ATP hydrolysis by several orders of magnitude to that of promoted (multi-site) ATP hydrolysis. Although all three subunits in F1 possess weak uni-site ATPase activity, only one of them () catalyzes promoted ATP hydrolysis. But all three subunits catalyze ATP synthesis driven by the proton flux. Internal rotation of the 33 or 3 moiety relative to the remainder of the F0F1 complex did not occur during oxidative phosphorylation by reconstituted submitochondrial particles.  相似文献   

16.
Interaction of mitochondrial F1-ATPase with the isolated natural inhibitor protein resulting in the inhibition of multi-site ATP hydrolysis is accompanied by the loss of activity at low ATP concentrations when single-site hydrolysis should occur. Catalytic site occupancy by [14C]nucleotides in F1-ATPase during steady-state [14C]ATP hydrolysis, which is saturated in parallel with single-site catalysis, is prevented after blocking the enzyme with the inhibitor protein.  相似文献   

17.
Two interesting previously reported properties of mitochondrial F1 ATPase have been confirmed and have been examined by18O exchange measurements to assess if they are consistent with sequential participation of catalytic sites during ATP hydrolysis. These are the ability of HCO 3 to increase reaction rate with apparent loss of cooperative interaction between subunits and the ability of ITP to accelerate the hydrolysis of a low concentration of ATP. The effect of HCO 3 was tested at concentrations of ATP lower than previous measurements. The activation disappeared when ATP was reduced to 0.1 µM. The HCO 3 activation at higher ATP concentrations did not change the extent of reversal of the cleavage of tightly bound ATP at the catalytic site, as measured by the average number of water oxygens incorporated with each Pi formed when 5 or 10 µM ATP is hydrolyzed. The data are consistent with sequential site participation with HCO 3 acceleration of ADP departure after a binding change that stops18O exchange and loosens ADP binding.When ITP concentration was lowered during net ITP hydrolysis by F1 ATPase an increase in water oxygen incorporation into Pi formed is observed, as noted previously for ATP hydrolysis. The acceleration of the cleavage of a constant low concentration of [-18O]ATP by concomitant hydrolysis of increasing concentrations of ITP was accompanied by a decrease in water oxygen incorporation with each Pi formed from the ATP. These results add to evidence for the binding change mechanism for F1 ATPase with sequential participation of catalytic sites.  相似文献   

18.
F1-ATPase is a rotary molecular motor powered by the torque generated by another rotary motor F0 to synthesize ATP in vivo. Therefore elucidation of the behavior of F1 under external torque is very important. Here, we applied controlled external torque by electrorotation and investigated the ATP-driven rotation for the first time. The rotation was accelerated by assisting torque and decelerated by hindering torque, but F1 rarely showed rotations in the ATP synthesis direction. This is consistent with the prediction by models based on the assumption that the rotation is tightly coupled to ATP hydrolysis and synthesis. At low ATP concentrations (2 and 5 μM), 120° stepwise rotation was observed. Due to the temperature rise during experiment, quantitative interpretation of the data is difficult, but we found that the apparent rate constant of ATP binding clearly decreased by hindering torque and increased by assisting torque.  相似文献   

19.
We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F1F0-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F1 and F0 sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F0 sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F0 sector, most likely mediated through altered protein—protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F1-33 hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur at a distance. We consider how subtle conformational changes in OSCP may be transmitted to F0.  相似文献   

20.
Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F0F1ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F0F1ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F0F1ATPsynthase regulation by the inhibitory protein IF1 in heart preconditioning strategies; ii) the structure and function of mitochondrial F0F1ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F0F1 ATP synthase in search for possible actors of its regulation, such as IF1 and calmodulin, at cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号