首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

2.
During vertebrate embryogenesis retinoic acid (RA) synthesis must be spatiotemporally regulated in order to appropriately stimulate various retinoid signaling pathways. Various forms of mammalian aldehyde dehydrogenase (ALDH) have been shown to oxidize the vitamin A precursor retinal to RA in vitro. Here we show that injection of Xenopus embryos with mRNAs for either mouse Aldh1 or mouse Raldh2 stimulates RA synthesis at low and high levels, respectively, while injection of human ALDH3 mRNA is unable to stimulate any detectable level of RA synthesis. This provides evidence that some members of the ALDH gene family can indeed perform RA synthesis in vivo. Whole-mount immunohistochemical analyses of mouse embryos indicate that ALDH1 and RALDH2 proteins are localized in distinct tissues. RALDH2 is detected at E7.5-E10.5 primarily in trunk tissue (paraxial mesoderm, somites, pericardium, midgut, mesonephros) plus transiently from E8.5-E9.5 in the ventral optic vesicle and surrounding frontonasal region. ALDH1 is first detected at E9.0-E10. 5 primarily in cranial tissues (ventral mesencephalon, dorsal retina, thymic primordia, otic vesicles) and in the mesonephros. As previous findings indicate that embryonic RA is more abundant in trunk rather than cranial tissues, our findings suggest that Raldh2 and Aldh1 control distinct retinoid signaling pathways by stimulating high and low RA biosynthetic activities, respectively, in various trunk and cranial tissues.  相似文献   

3.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

4.
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T(3)-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T(3)-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T(3)-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T(3). Communications between thyroid hormone and retinoid pathways are discussed.  相似文献   

5.
We have isolated the chick and mouse homologs of human aldehyde dehydrogenase 6 (ALDH6) that encode a third cytosolic retinaldehyde-specific aldehyde dehydrogenase. In both chick and mouse embryos, strong expression is observed in the sensory neuroepithelia of the head. In situ hybridization analysis in chick shows compartmentalized expression primarily in the ventral retina, olfactory epithelium, and otic vesicle; additional sites of expression include the isthmus, Rathke's pouch, posterior spinal cord interneurons, and developing limbs. Recombinant chick ALDH6 has a K(0.5) = 0.26 microm, V(max) = 48.4 nmol/min/mg and exhibits strong positive cooperativity (H = 1.9) toward all-trans-retinaldehyde; mouse ALDH6 has similar kinetic parameters. Expression constructs can confer 1000-fold increased sensitivity to retinoic acid receptor-dependent signaling from retinol in transient transfections experiments. The localization of ALDH6 to the developing sensory neuroepithelia of the eye, nose, and ear and discreet sites within the CNS suggests a role for RA signaling during primary neurogenesis at these sites.  相似文献   

6.
Vitamin A derivatives (retinoids) are actively involved during vertebrate embryogenesis. However, exogenous retinoids have also long been known as potent teratogens. The defects caused by retinoid treatment are complex. Here, we provided evidence that RAR-mediated retinoid signaling can repress Xenopus blastula Wnt signaling and impair dorsal development. Exogenous retinoic acid (RA) could antagonize the dorsalizing effects of lithium chloride-mediated Wnt activation in blastula embryos. The Wnt-responsive reporter gene transgenesis and luciferase assay showed that excess RA can repress the Wnt signaling in blastula embryos. In addition, the downstream target genes of the Wnt signaling that direct embryonic dorsal development, were also down-regulated in the RA-treated embryos. Mechanically, RA did not interfere with the stability of beta-catenin, but promoted its nuclear accumulation. The inverse agonist of retinoic acid receptors (RAR) rescued the Wnt signaling repression by RA and relieved the RA-induced nuclear accumulation of beta-catenin. Our results explain one of the reasons for the complicated teratogenic effects of retinoids and shed light on the endogenous way of interactions between two developmentally important signaling pathways.  相似文献   

7.
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate gene expression only in chordate animals. Investigation of retinoid metabolic pathways has resulted in the identification of numerous retinoid dehydrogenases that potentially contribute to metabolism of various retinoid isomers to produce active forms. These enzymes fall into three major families. Dehydrogenases catalyzing the reversible oxidation/reduction of retinol and retinal are members of either the alcohol dehydrogenase (ADH) or short-chain dehydrogenase/reductase (SDR) enzyme families, whereas dehydrogenases catalyzing the oxidation of retinal to retinoic acid are members of the aldehyde dehydrogenase (ALDH) family. Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs, eight of which are conserved in both mouse and human. Genetic studies indicate in vivo roles for two ADHs (ADH1 and ADH4), one SDR (RDH5), and two ALDHs (ALDH1 and RALDH2) all of which are conserved between humans and rodents. For several SDRs (RoDH1, RoDH4, CRAD1, and CRAD2) androgens rather than retinoids are the predominant substrates suggesting a function in androgen metabolism as well as retinoid metabolism.  相似文献   

8.
Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer.  相似文献   

9.
10.
Axis formation is a highly regulated process in vertebrate embryos. In mammals, inductive interactions between an extra-embryonic layer, the visceral endoderm, and the embryonic layer before gastrulation are critical both for anterior neural patterning and normal primitive streak formation. The role(s) of the equivalent extra-embryonic endodermal layer in the chick, the hypoblast, is still less clear, and dramatic effects of hypoblast on embryonic gene expression have yet to be demonstrated. We present evidence that two genes later associated with the gastrula organizer (Gnot-1 and Gnot-2) are induced by hypoblast signals in prestreak embryos. The significance of this induction by hypoblast is discussed in terms of possible hypoblast functions and the regulation of axis formation in the early embryo. Several factors known to be expressed in hypoblast, and retinoic acid, synergistically induce Gnot-1 and Gnot-2 expression in blastoderm cell culture. The presence of retinoic acid in prestreak embryos has not yet been directly demonstrated, but exogenous retinoic acid appears to mimic the effects of hypoblast rotation on primitive streak extension, raising the possibility that retinoid signaling plays some role in the pregastrula embryo.  相似文献   

11.
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T3-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T3-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T3-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T3. Communications between thyroid hormone and retinoid pathways are discussed.  相似文献   

12.
A bone morphogenetic protein 2/4 (BMP2/4) gene has been cloned from the starfish, Archaster typicus, for the purpose of investigating the expression pattern of the BMP4 gene in echinoderm embryos which do not produce micromeres. The isolated gene (named AtBMP2/4) contained two exons that encoded the entire coding region. The deduced AtBMP2/4 protein sequence contained 509 amino acids. Sequence comparison showed that it shared high amino acid similarity with sea urchin BMP2/4 and Xenopus BMP2 and BMP4. Northern blot analyses indicated that AtBMP2/4 mRNA initially appears at the blastula stage and has a maximal expression level at the gastrula stage. Whole-mount in situ hybridization revealed that AtBMP2/4 mRNA is expressed in the archenteron, coelomic vesicles, and ectodermal cells of gastrula stage embryos. The observed spatial distribution pattern vastly differs from that of sea urchin SpBMP2/4, which is expressed mainly in the oral ectoderm region of the mesenchyme blastula and early gastrula embryos.  相似文献   

13.
Correlations between facial anomalies and brain defects are well characterized throughout the clinical literature, yet a developmental basis for this association has not been identified. We demonstrate that the frontonasal process, which gives rise to the mid- and upper face, and the forebrain are linked early in their morphogenesis by a local retinoid signaling event that maintains the expression of key regulatory molecules. First, we show that aldehyde dehydrogenase 6, which synthesizes the ligand, retinoic acid, is localized to the ventral epithelium of the presumptive frontonasal process of chick embryos. At least two retinoid receptors are expressed in adjacent populations of mesenchyme. Second, using synthetic pan-specific retinoid antagonists, we transiently inhibit the ability of retinoid receptors to bind retinoic acid in the rostral head and we generate embryos with a hypoplastic forebrain, fused eyes, and no frontonasal process-derived structures such as the upper beak. These defects are not due to eliminating mesenchymal progenitors, as neural crest cells still migrate into the frontonasal process, despite disruptions to retinoid signaling. Rather, these malformations result from loss of fibroblast growth factor 8 and sonic hedgehog expression, which leads to increased programmed cell death and decreased proliferation in the forebrain and frontonasal process. Most significantly, we can rescue the morphological defects by re-introducing retinoic acid, or fibroblast growth factor and sonic hedgehog proteins into antagonist-treated embryos. We propose that the local source of retinoic acid in the rostral head initiates a regulatory cascade that coordinates forebrain and frontonasal process morphogenesis.  相似文献   

14.
The mitogen activated protein (MAP) kinase signaling cascade has been implicated in a wide variety of events during early embryonic development. We investigated the profile of MAP kinase activity during early development in the sea urchin, Strongylocentrotus purpuratus, and tested if disruption of the MAP kinase signaling cascade has any effect on developmental events. MAP kinase undergoes a rapid, transient activation at the early blastula stage. After returning to basal levels, the activity again peaks at early gastrula stage and remains high through the pluteus stage. Immunostaining of early blastula stage embryos using antibodies revealed that a small subset of cells forming a ring at the vegetal plate exhibited active MAP kinase. In gastrula stage embryos, no specific subset of cells expressed enhanced levels of active enzyme. If the signaling cascade was inhibited at any time between the one cell and early blastula stage, gastrulation was delayed, and a significant percentage of embryos underwent exogastrulation. In embryos treated with MAP kinase signaling inhibitors after the blastula stage, gastrulation was normal but spiculogenesis was affected. The data suggest that MAP kinase signaling plays a role in gastrulation and spiculogenesis in sea urchin embryos.  相似文献   

15.
Overexpression of S-adenosylmethionine decarboxylase (SAMDC) mRNA in 1- and 2-cell stage Xenopus embryos induces cell autonomous dissociation at the late blastula stage and developmental arrest at the early gastrula stage. The induction of cell dissociation took place "punctually" at the late blastula stage in the SAMDC-overexpressing cells, irrespective of the stage of the microinjection of SAMDC mRNA. When we examined the cells undergoing the dissociation, we found that they were TUNEL-positive and contained fragmented nuclei with condensed chromatin and fragmented DNA. Furthermore, by injecting Xenopus Bcl-2 mRNA together with SAMDC mRNA, we showed that SAMDC-overexpressing embryos are rescued completely by Bcl-2 and becometadpoles. These results indicatethat cell dissociation induced by SAMDC overexpression is due to apoptotic cell death. Since the level of S-adenosylmethionine (SAM) is greatly reduced in SAMDC-overexpressing embryos and this induces inhibition of protein synthesis accompanied by the inhibition of DNA and RNA syntheses, we conclude that deficiency in SAM induced by SAMDC overexpression activates the maternal program of apoptosis in Xenopus embryos at the late blastula stage, but not before. We propose that this mechanism serves as a surveillance mechanism to check and eliminate cells physiologically damaged during the cleavage stage.  相似文献   

16.
A Yoshida  L C Hsu  V Davé 《Enzyme》1992,46(4-5):239-244
The major cytosolic aldehyde dehydrogenase isozyme (ALDH1) exhibits strong activity for oxidation of retinal to retinoic acid, while the major mitochondrial ALDH2 and the stomach cytosolic ALDH3 have no such activity. The Km of ALDH1 for retinal is about 0.06 mumol/l at pH 7.5, and the catalytic efficiency (Vmax/Km) for retinal is about 600 times higher than that for acetaldehyde. Thus, ALDH1 can efficiently produce retinoic acid from retinal in tissues with low retinal concentrations (< 0.01 mumol/l). The gene for ALDH1 has hormone response elements. These findings suggest that the major physiological substrate of human ALDH1 is retinal, and that its primary biological role is generation of retinoic acid resulting in modulation of cell differentiation including hormone-mediated development.  相似文献   

17.
18.
Four complete hsp 30 genes have been isolated from Xenopus laevis: hsp 30A, hsp 30B (a pseudogene), hsp 30C, and hsp 30D. The hsp 30A and hsp 30C genes are first heat inducible at the early tailbud stage, as determined by RNase protection and RT-PCR assays. In this study, we determined by RT-PCR that the hsp 30D gene was first heat inducible (33oC for 1 h) at the mid-tailbud stage, approximately 1 day later in development than hsp 30A and hsp 30C. Furthermore, using Northern blot analysis, we detected the presence of very low levels of hsp 30 mRNA at the heat-shocked late blastula stage. The relative levels of these pre-tailbud (PTB) hsp 30 mRNAs increased at the gastrula and neurula stage followed by a dramatic enhancement in heat shocked tail-bud and tadpole stage embryos (50- to 100- fold relative to late blastula). Interestingly, treatment of blastula or gastrula embryos at high temperatures (37oC for 1 h) or with the protein synthesis inhibitor, cycloheximide, followed by heat shock, led to enhanced accumulation of the pre-tailbud (PTB) hsp 30 mRNAs. hsp 70, hsp 87, and actin messages were not stabilized at high temperatures or by cycloheximide treatment. Finally, hsp 30D mRNA was not detected by RT-PCR analysis of cycloheximidetreated, heat-shocked blastula stage embryos, confirming that it is not a member of the PTB hsp 30 mRNAs. This study indicates that differential gene expression and mRNA stability are involved in the regulation of hsp 30 gene expression during early Xenopus laevis development. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Early patterning of the endoderm as a prerequisite for pancreas specification involves retinoic acid (RA) as a critical signalling molecule in gastrula stage Xenopus embryos. In extension of our previous studies, we made systematic use of early embryonic endodermal and mesodermal explants. We find RA to be sufficient to induce pancreas-specific gene expression in dorsal but not ventral endoderm. The differential expression of retinoic acid receptors (RARs) in gastrula stage endoderm is important for the distinct responsiveness of dorsal versus ventral explants. Furthermore, BMP signalling, that is repressed dorsally, prevents the formation of pancreatic precursor cells in the ventral endoderm of gastrula stage Xenopus embryos. An additional requirement for mesoderm suggests the production of one or more further pancreas inducing signals by this tissue. Finally, recombination of manipulated early embryonic explants, and also inhibition of RA activity in whole embryos, reveal that RA signalling, as it is relevant for pancreas development, operates simultaneously on both mesodermal and endodermal germ layers.  相似文献   

20.
In the present study we have characterized the synthesis of members of the HSP30 family during Xenopus laevis development using a polyclonal antipeptide antibody derived from the carboxyl end of HSP30C. Two-dimensional PAGE/immunoblot analysis was unable to detect any heat-inducible small HSPs in cleavage, blastula, gastrula, or neurula stage embryos. However, heat-inducible accumulation of a single protein was first detectable in early tailbud embryos with an additional 5 HSPs at the late tailbud stage and a total of 13 small HSPs at the early tadpole stage. In the Xenopus A6 kidney epithelial cell line, a total of eight heat-inducible small HSPs were detected by this antibody. Comparison of the pattern of protein synthesis in embryos and somatic cells revealed a number of common and unique heat inducible proteins in Xenopus embryos and cultured kidney epithelial cells. To specifically identify the protein product of the HSP30C gene, we made a chimeric gene construct with the Xenopus HSP30C coding sequence under the control of a constitutive promoter. This construct was microinjected into fertilized eggs and resulted in the premature and constitutive synthesis of the HSP30C protein in gastrula stage embryos. Through a series of mixing experiments, we were able to specifically identify the protein encoded by the HSP30C gene in embryos and somatic cells and to conclude that HSP30C synthesis was first heat-inducible at the early tailbud stage of development. The differential pattern of heat-inducible accumulation of members of the HSP30 family during Xenopus development suggests that these proteins may have distinct functions at specific embryonic stages during a stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号