首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dendritic cells (DCs) capture and process Ag in the periphery. Thus, traffic through lymphatic vessels is mandatory before DCs relocate to lymph nodes where they are dedicated to T-cell priming. Here, we show that the ubiquitous self-marker CD47 selectively regulates DC, but not T and B cell trafficking across lymphatic vessels and endothelial barriers in vivo. We find an altered skin DC migration and impaired T-cell priming in CD47-deficient mice at steady state and under inflammatory conditions. Competitive DC migration assays and active immunization with myeloid DCs demonstrate that CD47 expression is required on DCs but not on the endothelium for efficient DC trafficking and T-cell responses. This migratory defect correlates with the quasi-disappearance of splenic marginal zone DCs in nonmanipulated CD47-deficient mice. Nonetheless, CCR7 expression and CCL19-driven chemotaxis remain intact. Our data reveal that CD47 on DCs is a critical factor in controlling migration and efficient initiation of the immune response.  相似文献   

2.
Li H  Oliver T  Jia W  He YW 《The EMBO journal》2006,25(17):4097-4107
Rho guanosine triphosphatases (GTPases) regulate multiple aspects of dendritic cell (DC) function, but what regulates the expression of Rho GTPases in DCs is unknown. Here, we show that the extracellular matrix protein mindin regulates the expression of Rho GTPases in DCs. Mindin(-/-) mice displayed defective CD4+ T-cell priming and impaired humoral immune responses to T-dependent antigens. Mindin(-/-) DCs had reduced expression of Rac1/2 and impaired priming capacity owing to inefficient engagement with T lymphocytes. Ectopic Rac1 expression restored the priming capability of Mindin(-/-) DCs. Furthermore, we show that DC adhesion to mindin matrix was blocked by antibodies to alpha4, alpha5 and beta1 integrins. DCs lacking beta1 integrin had reduced adhesion to mindin matrix, decreased expression of Rac1/2 and impaired priming capacity. These results suggest that mindin-integrin interactions play a key role in regulating Rho GTPase expression in DCs and DC priming of T lymphocytes.  相似文献   

3.
We studied the role of a RhoA-specific guanine nucleotide exchange factor (p190RhoGEF) in dendritic cells (DCs), using transgenic (TG) mice that over-express a full gene of p190RhoGEF under the control of an invariant chain promoter. TG mice lacked localization of activated DCs to the T cell zone in the spleen and had reduced serum levels of IL-6 in response to lipopolysaccharide (LPS) injection. DCs from these mice also showed reduced surface expression of CD86, CD40, and CD205, but not MHCII, as well as a reduced capability to uptake antigen. Moreover, chemokine-driven migration and secretion of IL-6, but not of IL-12, were impaired after LPS-stimulation of TG DCs. Collectively, these results suggest that over-expressing p190RhoGEF negatively regulates conventional DC function in response to bacterial LPS infection.  相似文献   

4.
Studies were undertaken to clarify the roles of individual leukocyte populations in maintaining the presence and organization of splenic dendritic cells (DCs). Using Abs specific for DC subsets, we found that the distinct types of DC maintained appropriate compartmentalization within the white pulp of lymphocyte-deficient mice despite an unusual overall distribution of DCs. Even in mice lacking both B and T lymphocytes, the central arteriole remained the structure around which T area DCs were organized. Marginal zone area DCs remained in a peripheral sheath excluded from the T area DCs. Additionally, we revealed an important role for splenic B cells in the presence and organization of marginal zone cells. B-deficient or B- and T-deficient mice lacked sialoadhesin+ marginal zone macrophages and lacked MAdCAM-1 expression in marginal zone reticular endothelial cells. Adoptive transfer of B lymphocytes induced MAdCAM-1 expression but failed to recruit marginal zone macrophages. Taken together, our results demonstrate that the arrival, localization, and persistence of DCs in spleen are events not solely dependent upon signals from the mature B and T cells or marginal zone macrophages. We suggest that specific stromal elements in the vicinity of the central arteriole are primarily responsible for providing directional cues to the DC.  相似文献   

5.
CD4(+) T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4(+) T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4(+) T cells was markedly reduced when cultured with splenic CD8α(+) DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4(+) or CD4(-)CD8α(-) DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α(+) DCs, but not in CD4(+) and CD4(-)CD8α(-) DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α(+) DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α(+) DCs. Three days post infection with Ye the number of splenic CD8α(+) and CD4(+) DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4(+) and CD8α(+) DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye.  相似文献   

6.
We systematically investigated the impact of the relative maturation levels of dendritic cells (DCs) on their cell surface phenotype, expression of cytokines and chemokines/chemokine receptors (by DNA array and RNase protection analyses), biological activities, and abilities to induce tumor immunity. Mature DCs expressed significantly heightened levels of their antigen-presenting machinery (e.g., CD54, CD80, CD86) and numerous cytokines and chemokines/chemokine receptors (i.e., Flt-3L, G-CSF, IL-1alpha and -1beta, IL-6, IL-12, CCL-2, -3, -4, -5, -17, and -22, MIP-2, and CCR7) and were significantly better at inducing effector T cell responses in vitro. Furthermore, mice vaccinated with tumor peptide-pulsed mature DCs better survived challenge with a weakly immunogenic tumor (8 of 8 survivors) than did mice vaccinated with less mature (3 of 8 survived) or immature (0 of 8 survivors) DCs. Nevertheless, intermediate-maturity DCs expressed substantial levels of Flt-3L, IGF-1, IL-1alpha and -1beta, IL-6, CCL-2, -3, -4, -9/10, -17, and -22, MIP-2, osteopontin, CCR-1, -2, -5, and -7, and CXCR-4. Taken together, our data clearly underscore the critical nature of employing DCs of full maturity for DC-based antitumor vaccination strategies.  相似文献   

7.
In mice, immunoregulatory APCs express the dendritic cell (DC) marker CD11c, and one or more distinctive markers (CD8alpha, B220, DX5). In this study, we show that expression of the tryptophan-degrading enzyme indoleamine 2,3 dioxygenase (IDO) is selectively induced in specific splenic DC subsets when mice were exposed to the synthetic immunomodulatory reagent CTLA4-Ig. CTLA4-Ig did not induce IDO expression in macrophages or lymphoid cells. Induction of IDO completely blocked clonal expansion of T cells from TCR transgenic mice following adoptive transfer, whereas CTLA4-Ig treatment did not block T cell clonal expansion in IDO-deficient recipients. Thus, IDO expression is an inducible feature of specific subsets of DCs, and provides a potential mechanistic explanation for their T cell regulatory properties.  相似文献   

8.
Mast cell-associated TNF promotes dendritic cell migration   总被引:6,自引:0,他引:6  
Mast cells represent a potential source of TNF, a mediator which can enhance dendritic cell (DC) migration. Although the importance of mast cell-associated TNF in regulating DC migration in vivo is not clear, mast cells and mast cell-derived TNF can contribute to the expression of certain models of contact hypersensitivity (CHS). We found that CHS to FITC was significantly impaired in mast cell-deficient Kit(W-sh/W-sh) or TNF(-/)(-) mice. The reduced expression of CHS in Kit(W-sh/W-sh) mice was fully repaired by local transfer of wild-type bone marrow-derived cultured mast cells (BMCMCs), but was only partially repaired by transfer of TNF(-/)(-) BMCMCs. Thus, mast cells, and mast cell-derived TNF, were required for optimal expression of CHS to FITC. We found that the migration of FITC-bearing skin DCs into draining lymph nodes (LNs) 24 h after epicutaneous administration of FITC in naive mice was significantly reduced in mast cell-deficient or TNF(-/)(-) mice, but levels of DC migration in these mutant mice increased to greater than wild-type levels by 48 h after FITC sensitization. Mast cell-deficient or TNF(-/)(-) mice also exhibited significantly reduced migration of airway DCs to local LNs at 24 h after intranasal challenge with FITC-OVA. Migration of FITC-bearing DCs to LNs draining the skin or airways 24 h after sensitization was repaired in Kit(W-sh/W-sh) mice which had been engrafted with wild-type but not TNF(-/)(-) BMCMCs. Our findings indicate that mast cell-associated TNF can contribute significantly to the initial stages of FITC-induced migration of cutaneous or airway DCs.  相似文献   

9.
10.
11.
Uterine dendritic cells (DCs) are critical for activating the T cell response mediating maternal immune tolerance of the semiallogeneic fetus. GM-CSF (CSF2), a known regulator of DCs, is synthesized by uterine epithelial cells during induction of tolerance in early pregnancy. To investigate the role of GM-CSF in regulating uterine DCs and macrophages, Csf2-null mutant and wild-type mice were evaluated at estrus, and in the periconceptual and peri-implantation periods. Immunohistochemistry showed no effect of GM-CSF deficiency on numbers of uterine CD11c(+) cells and F4/80(+) macrophages at estrus or on days 0.5 and 3.5 postcoitum, but MHC class II(+) and class A scavenger receptor(+) cells were fewer. Flow cytometry revealed reduced CD80 and CD86 expression by uterine CD11c(+) cells and reduced MHC class II in both CD11c(+) and F4/80(+) cells from GM-CSF-deficient mice. CD80 and CD86 were induced in Csf2(-/-) uterine CD11c(+) cells by culture with GM-CSF. Substantially reduced ability to activate both CD4(+) and CD8(+) T cells in vivo was evident after delivery of OVA Ag by mating with Act-mOVA males or transcervical administration of OVA peptides. This study shows that GM-CSF regulates the efficiency with which uterine DCs and macrophages activate T cells, and it is essential for optimal MHC class II- and class I-mediated indirect presentation of reproductive Ags. Insufficient GM-CSF may impair generation of T cell-mediated immune tolerance at the outset of pregnancy and may contribute to the altered DC profile and dysregulated T cell tolerance evident in infertility, miscarriage, and preeclampsia.  相似文献   

12.
13.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-alpha production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-alpha administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-alpha, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-alpha production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-gamma.  相似文献   

14.
To investigate the in vivo effects of Staphylococcal enterotoxin B (SEB) on dendritic cells (DCs) in the spleen, a single dose of SEB (50 microg/kg) was administered to BALB/c mice by intraperitoneal injection. Afterwards, the mice were sacrificed at 2, 6 and 24 hr, 2, 4, 7 and 15 days, and the spleens were removed. The immunocytochemical characterization of the cells was carried out using various monoclonal antibodies in cryostat-cut sections. The distribution patterns of DCs and their major costimulatory molecules, CD80, CD86 and CD40 in the spleen were identified, and the evidence for maturation of DCs in vivo in response to SEB was obtained. It was found that systemic administration of SEB induced the migration of most of the immature, splenic DCs from the marginal zone to the periarterial lymphatic sheath within 6 hr. This movement paralleled a maturation process, as assessed by upregulation of CD40, CD80 and CD86 expression in the interdigitating dendritic cells (IDCs). The upregulation of costimulatory molecule expression was conspicuous only in DCs in contrast to other antigen-presenting cells (APCs) such as macrophages and B cells which did not show any significant alterations in their costimulatory molecule expression. We also demonstrated the temporal expression pattern of these costimulatory molecules on the activated DCs. The upregulation of costimulatory molecules on DCs reached a peak level 6 hr after SEB injection, while the increase in number of T cells expressing T cell receptor V138 reached a peak level on day 2 after SEB treatment. In conclusion, we demonstrated the in vivo DC response to SEB in the mouse spleen, especially a potent stimulative effect of SEB on DCs in vivo, a temporal distribution pattern of DCs as well as T cells including TCR Vbeta8+ T cells, and a differential expression pattern of costimulatory molecules on the activated DCs. The results of the present study indicate that DCs are the principal type of APCs which mediate T cell activation by SAg in vivo, and that each costimulatory molecule may have different role in the activation of DCs by SAg. Thus, it is plausible to speculate that DCs play a critical role in the T cell clonal expansion by SAgs and other SAg-induced immune responses in vivo.  相似文献   

15.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

16.
APC acting at the early stages of an immune response can shape the nature of that response. Such APC will include dendritic cells (DCs) but may also include populations of B cells such as marginal zone B cells in the spleen. In this study, we analyze APC populations in mouse spleen and compare the phenotype and function of B220(+)CD11c(-) populations with those of CD11c(+) spleen DC subsets. Low-density B220(+) cells had morphology similar to DCs and, like DCs, they could stimulate naive T cells, and expressed high levels of MHC and costimulatory molecules. However, the majority of the B220(+) cells appeared to be of B cell lineage as demonstrated by coexpression of CD19 and surface Ig, and by their absence from RAG-2(-/-) mice. The phenotype of these DC-like B cells was consistent with that of B cells in the marginal zone of the spleen. On bacterial stimulation, they preferentially produced IL-10 in contrast to the DCs, which produced IL-12. Conventional B cells did not produce IL-10. The DC-like B cells could be induced to express low levels of the DC marker CD11c with maturational stimuli. A minority of the B220(+)CD11c(-) low-density cells did not express CD19 and surface Ig and may be a DC subset; this population also produced IL-10 on bacterial stimulation. B220(+) APC in mouse spleen that stimulate naive T cells and preferentially produce IL-10 may be involved in activating regulatory immune responses.  相似文献   

17.
Dendritic cells (DC) are the professional APCs that initiate T cell immune responses. DC can develop from both myeloid and lymphoid progenitors. In the mouse, the CD8alpha(+) DC had been designated as "lymphoid" DC, and CD8alpha(-) DC as "myeloid" DC until recently when it was demonstrated that common myeloid progenitors can also give rise to CD8alpha(+) DC in bone marrow chimera mice. However, it is still not clear which committed myeloid lineages differentiate into CD8alpha(+) DC. Because monocytes can differentiate into DC in vivo, the simplest hypothesis is that the CD8alpha(+) DC can be derived from the monocyte/macrophage. In this study we show that cell clones, isolated from CD8alpha(+) DC lymphoma but with a monocytic phenotype (CD11c(low/-)D11b(high)CD8alpha(-)I-A(low)), can redifferentiate into CD8alpha(+) DC either when stimulated by LPS and CD40L or when they migrate into the lymphoid organs. Maturation of DC in vivo correlated with strong priming of allogeneic T cells. Moreover, the monocytes from cultured splenocytes or peritoneal exudates macrophages of wild-type mice are also capable of differentiating into CD11c(+)CD8alpha(+) DC after their migration into the draining lymph nodes. Our results suggest that monocytes can be direct precursors for CD11c(+)CD8alpha(+) DC in vivo. In addition, the monocyte clones described in this study may be valuable for studying the differentiation and function of CD8alpha(+) DC that mediate cross-presentation of Ag to CD8 T cells specific for cell-associate Ags.  相似文献   

18.
Respiratory tract dendritic cells (DCs) are juxtaposed to directly sample inhaled environmental particles. Processing and presentation of these airborne Ags could result in either the development of immunity or tolerance. The purpose of this study was to determine the consequences of cigarette smoke exposure on DC function in mice. We demonstrate that while cigarette smoke exposure decreased the number of DCs in the lungs, Ag-induced DC migration to the regional thoracic lymph nodes was unaffected. However, cigarette smoking suppressed DC maturation within the lymph nodes as demonstrated by reduced cell surface expression of MHC class II and the costimulatory molecules CD80 and CD86. Consequently, DCs from cigarette smoke-exposed animals had a diminished capacity to induce IL-2 production by T cells that was associated with diminished Ag-specific T cell proliferation in vivo. Smoke-induced defects in DC function leading to impaired CD4(+) T cell function could inhibit tumor surveillance and predispose patients with chronic obstructive pulmonary disease to infections and exacerbations.  相似文献   

19.
The Src family kinase Lyn plays both stimulatory and inhibitory roles in hemopoietic cells. In this report we provide evidence that Lyn is involved in dendritic cell (DC) generation and maturation. Loss of Lyn promoted DC expansion in vitro from bone marrow precursors due to enhanced generation and accelerated differentiation of Lyn-deficient DC progenitors. Differentiated Lyn-deficient DCs also had a higher survival rate. Similarly, the CD11c-positive cell number was increased in aged Lyn-deficient mice in vivo. In contrast to their enhanced generation, lyn-/- DCs failed to mature appropriately in response to innate stimuli, resulting in DCs with lower levels of MHC class II and costimulatory molecules. In addition, IL-12 production and Ag-specific T cell activation were reduced in lyn-/- DCs after maturation, resulting in impaired Th1 responses. This is the first study to characterize Lyn-deficient DCs. Our results suggest that Lyn kinase plays uniquely negative and positive regulatory roles in DC generation and maturation, respectively.  相似文献   

20.
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号