首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   9篇
  国内免费   2篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   9篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   7篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
Biodegradation of neutralized sarin.   总被引:1,自引:0,他引:1  
This research investigated the biotransformation of IMPA, the neutralization product of the nerve agent Sarin, by a microbial consortia. As mandated by the Chemical Weapons Convention signed by 132 countries in 1993, all chemical warfare agents are to be destroyed within ten years of ratification. Technologies must be developed to satisfy this commitment. This paper presents data from a biodegradation kinetics study and background information on the biological transformation of IMPA. Microbial transformation of organophosphate nerve agents and organophosphate pesticide intermediates can be incorporated into a treatment process for the fast and efficient destruction of these similar compounds. Sarin (isopropyl methylphosphonofluoridate), also known as GB, is one of several highly neurotoxic chemical warfare agents that have been developed over the past 50 to 60 years. Four mixed cultures were acclimated to the Sarin hydrolysis product, isopropyl methylphosphonic acid (IMPA). Two of these cultures, APG microorganisms and SX microorganisms, used IMPA as the sole phosphorus source. Extended exposure to IMPA improved the cultures' abilities to degrade IMPA to form methylphosphonic acid (MPA) and inorganic phosphate. The presence of free phosphate in the reactor suppressed the degradation of IMPA. IMPA did not inhibit either cultural consortia within the tested concentration range (0 to 1250 mg/L). The numax was 120.9 mg/L/day for the SX microorganisms and 118.3 mg/L/day for the APG microorganisms. Initial IMPA concentrations of 85 to 90 mg/L were degraded to nondetectable levels within 75 h. These results demonstrate the potential for biodegradation to serve as a complementary treatment process for the destruction of stockpiled Sarin.  相似文献   
2.
This report describes the isolation of Aeromonas veronii biovar sobria as the causative enteropathogen of diarrhoea in an oncological patient after failure of detection of other infectious agents. The case points out the severe and long course of the infection, the diagnostic dilemma, and the prompt recovery after antibiotic treatment.  相似文献   
3.
4.
The control of Spodoptera frugiperda is based on synthetic insecticides, so some alternatives are the use of entomopathogenic fungi (EF) and neem extract. The objective of the study was to evaluate in vitro effectiveness of native EF and neem extracts on S. frugiperda larvae. Six EF were identified by DNA sequencing of ITS regions from three EF (Fusarium solani, Metarrhizium robertsii, Nigrospora spherica and Penicillium citrinum). They were evaluated in concentrations of 1 × 10⁸ spores/ mL. In addition, a second bioassay was carried out evaluating only F. solani, M. robertsii and N. sphaerica and the addition of vegetable oil. On the other hand, extraction of secondary metabolites from neem seed (Azadirachta indica) was carried out by performing, mass (g) and solvent volume (mL ethanol and water) combinations, which were subjected to microwaves and ultrasound. Subsequently, these extracts were evaluated in concentrations of 3%, 4% and 5%. A survival analysis was performed for each of the bioassays. With respect to the results of the first bioassay, F. solani obtained a probability of survival of 0.476 on the seventh day, while in the second bioassay, M. robertsii obtained 0.488 survival probability. This suggests that the expected percentage of larvae that stay alive on the sixth day is 48.8%. However, in the evaluation of the neem extract the combination 1:12/70% to 4% caused 84% mortality of larvae. The use of native HE and neem extracts has potential for the control of S. frugiperda.  相似文献   
5.
Large-conductance Ca2+-activated K+ (BK) channels are reported to be essential for NADPH oxidase-dependent microbial killing and innate immunity in leukocytes. Using human peripheral blood and mouse bone marrow neutrophils, pharmacological targeting, and BK channel gene-deficient (BK–/–) mice, we stimulated NADPH oxidase activity with 12-O-tetradecanoylphorbol-13-acetate (PMA) and performed patch-clamp recordings on isolated neutrophils. Although PMA stimulated NADPH oxidase activity as assessed by O2 and H2O2 production, our patch-clamp experiments failed to show PMA-activated BK channel currents in neutrophils. In our studies, PMA induced slowly activating currents, which were insensitive to the BK channel inhibitor iberiotoxin. Instead, the currents were blocked by Zn2+, which indicates activation of proton channel currents. BK channels are gated by elevated intracellular Ca2+ and membrane depolarization. We did not observe BK channel currents, even during extreme depolarization to +140 mV and after elevation of intracellular Ca2+ by N-formyl-L-methionyl-L-leucyl-phenylalanine. As a control, we examined BK channel currents in cerebral and tibial artery smooth muscle cells, which showed characteristic BK channel current pharmacology. Iberiotoxin did not block killing of Staphylococcus aureus or Candida albicans. Moreover, we addressed the role of BK channels in a systemic S. aureus and Yersinia enterocolitica mouse infection model. After 3 and 5 days of infection, we found no differences in the number of bacteria in spleen and kidney between BK–/– and BK+/+ mice. In conclusion, our experiments failed to identify functional BK channels in neutrophils. We therefore conclude that BK channels are not essential for innate immunity. killing assay; reactive oxygen species; BK-deficient mice; mice infection  相似文献   
6.
β-barrel proteins are found in the outer membranes of eukaryotic organelles of endosymbiotic origin as well as in the outer membrane of Gram-negative bacteria. Precursors of mitochondrial β-barrel proteins are synthesized in the cytosol and have to be targeted to the organelle. Currently, the signal that assures their specific targeting to mitochondria is poorly defined. To characterize the structural features needed for specific mitochondrial targeting and to test whether a full β-barrel structure is required, we expressed in yeast cells the β-barrel domain of the trimeric autotransporter Yersinia adhesin A (YadA). Trimeric autotransporters are found only in prokaryotes, where they are anchored to the outer membrane by a single 12-stranded β-barrel structure to which each monomer is contributing four β-strands. Importantly, we found that YadA is solely localized to the mitochondrial outer membrane, where it exists in a native trimeric conformation. These findings demonstrate that, rather than a linear sequence or a complete β-barrel structure, four β-strands are sufficient for the mitochondria to recognize and assemble a β-barrel protein. Remarkably, the evolutionary origin of mitochondria from bacteria enables them to import and assemble even proteins belonging to a class that is absent in eukaryotes.  相似文献   
7.
Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of κB kinase (IKK)-β resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential ΔΨm and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.  相似文献   
8.
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.  相似文献   
9.
Biodegradation of 2,4,6-trinitrotoluene (TNT) proceeds through several different metabolic pathways. However, the reaction steps which are considered rate-controlling have not been fully determined. Glycolysis and other biological pathways contain biochemical reactions which are acutely rate-limiting due to enzyme control. These rate-limiting steps also have large negative Gibbs free energy changes. Because xenobiotic compounds such as TNT can be used by biological systems as nitrogen, carbon, and energy sources, it is likely that their degradation pathways also contain acutely rate-limiting steps. Identification of these rate-controlling reactions will enhance and better direct genetic engineering techniques to increase specific enzyme levels.This article identifies likely rate-controlling steps (or sets of steps) in reported TNT biodegradation pathways by estimating the Gibbs free energy change for each step and for the overall pathways. The biological standard Gibbs free energy change of reaction was calculated for each pathway step using a group contribution method specifically tailored for biomolecules. The method was also applied to hypothetical "pathways" constructed to mineralize TNT using several different microorganisms. Pathways steps that have large negative Gibbs free energy changes are postulated to be potentially rate-controlling. The microorganisms which utilize degradation pathways with the largest overall (from TNT to citrate) negatiave Gibbs free energy changes were also determined. Such microorganisms can extract more energy from the starting substrate and are thus assumed to have a competitive advantage over other microorganisms. Results from this modeling-based research are consistent with much experimental work available in the literature. (c) 1996 John Wiley & Sons, Inc.  相似文献   
10.
The apple rootstock,A106(Malus sieboldii),had 17 bivalents in pollen mother cells at meiotic metaphase 1,and 17 chromosomes in a haploid pollen cell.Karyotypes were prepared from root-tip cells with 2n=34 chromosomes,Seven out of 82 karyotypes(8.5%) showed one pari of satellites at the end of the short arm of chromosome 3.C-bands were shown on 6 pairs of chromosomes 2,4,6,8,14,and 16 near the telomeric regions of short arms.Probes for three ripening-related genes from Malus x domestica:endopolygalacturonase(EPG,0.6kb),ACC oxidase(1.2kb),and ACC synthase(2kb)were hybridized in situ to metaphase chromosomes of A106.Hybridization sites for the EPG gene were observed on the long arm of chromosome 14 in 15 out of 16 replicate spreads and proximal to the centromere of chromosomes 6 and 11.For the ACC oxidase gene,hylridization sites were observed in the telomeric region of the short arm of chromosomes 5 and 11 in 87% and 81% of 16 spreads respectively,proxiaml to the centromere of chromosome 1 in 81% of the spreads,and on the long arm of chromosome 13 in 50% of the spreads. Physical mapping of three fruit ripening genes in an apple rootstock A106.Twenty five spreads were studied for the ACC synthase gene and hybridization sites were observed in the telomeric region of the short arm of chromosome 12 in 96% of the spreads.chromosomes 9 and 10 in 76% of the spreads,and chromosome 17 in 56% of the spreads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号