首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Functional proteins of complex eukaryotes within the same species are rather invariant. A single catalytic component of telomerase TERT is essential for an active telomerase complex that maintains telomeres. Surprisingly, we have identified two paralogous SpTERT-L and SpTERT-S genes with novel domains in Strongylocentrotus purpuratus (purple sea urchin). The SpTERT-S and SpTERT-L genes were differentially expressed throughout embryogenesis. An unusual germline nucleotide substitution and amino acid variation was evident in these TERTs. The hypervariability of SpTERT-S haplotypes among different individuals reached unprecedented levels of pi > 0.2 in exon 11 region. The majority of nucleotide changes observed led to nonsynonymous substitutions creating novel amino acids and motifs, suggesting unusual positive selection and rapid evolution. The majority of these variations were in domains involved in binding of SpTERT to its RNA component. Despite hypervariability at protein level, SpTERT-S conferred telomerase activity, and its suppression during early embryogenesis led to arrest at late mesenchymal blastula. Domain exchange and embryo rescue experiments suggested that SpTERT may have evolved functions unrelated to classic telomerase activity. We suggest that telomerase has a specific and direct function that is essential for integration of early polarity signals that lead to gastrulation. Identification of these unique hypervariable telomerases also suggests presence of a diversity generation mechanism that inculcates hypervariable telomerases and telomere lengths in germline.  相似文献   

3.
Patterns of nucleotide substitution in pseudogenes and functional genes   总被引:26,自引:0,他引:26  
Summary The pattern of point mutations is inferred from nucleotide substitutions in pseudogenes. The pattern obtained suggests that transition mutations occur somewhat more frequently than transversion mutations and that mutations result more often in A or T than in G or C. Our results are discussed with respect to the predictions from Topal and Fresco's model for the molecular basis of point (substitution) mutations (Nature 263:285–289, 1976). The pattern of nucleotide substitution at the first and second positions of codons in functional genes is quite similar to that in pseudogenes, but the relative frequency of the transition CT in the sense strand is drastically reduced and those of the transversions CG and GC are doubled. The differences between the two patterns can be explained by the observation that in the protein evolution amino acid substitutions occur mainly between amino acids with similar biochemical properties (Grantham, Science 185:862–864, 1974). Our results for the patterns of nucleotide substitutions in pseudogenes and in functional genes lead to the prediction that both the coding and non-coding regions of protein coding genes should have high frequencies of A and T. Available data show that the non-coding regions are indeed high in A and T but the coding regions are low in T, though high in A.  相似文献   

4.
5.
Mammalian gene evolution: Nucleotide sequence divergence between mouse and rat   总被引:16,自引:0,他引:16  
As a paradigm of mammalian gene evolution, the nature and extent of DNA sequence divergence between homologous protein-coding genes from mouse and rat have been investigated. The data set examined includes 363 genes totalling 411 kilobases, making this by far the largest comparison conducted between a single pair of species. Mouse and rat genes are on average 93.4% identical in nucleotide sequence and 93.9% identical in amino acid sequence. Individual genes vary substantially in the extent of nonsynonymous nucleotide substitution, as expected from protein evolution studies; here the variation is characterized. The extent of synonymous (or silent) substitution also varies considerably among genes, though the coefficient of variation is about four times smaller than for nonsynonymous substitutions. A small number of genes mapped to the X-chromosome have a slower rate of molecular evolution than average, as predicted if molecular evolution is male-driven. Base composition at silent sites varies from 33% to 95% G + C in different genes; mouse and rat homologues differ on average by only 1.7% in silent-site G + C, but it is shown that this is not necessarily due to any selective constraint on their base composition. Synonymous substitution rates and silent site base composition appear to be related (genes at intermediate G + C have on average higher rates), but the relationship is not as strong as in our earlier analyses. Rates of synonymous and nonsynonymous substitution are correlated, apparently because of an excess of substitutions involving adjacent pairs of nucleotides. Several factors suggest that synonymous codon usage in rodent genes is not subject to selection.  相似文献   

6.
DNA序列进化过程中核苷酸替代的非独立性研究   总被引:4,自引:2,他引:2  
杨子恒 《遗传学报》1990,17(5):354-359
本文评述了DNA序列间核苷酸替代数的估计方法,并通过对七个物种中组蛋白基因的比较对DNA进化的模型进行了考察。发现H2A基因第三位点上的碱基组成在物种间变异很大,并且跟H2A基因第一位点、H4基因第一、三位点及H2A上游,下游序列中的碱基组成有强正相关,提示DNA序列进化过程中存在着物种特异的区域性约束力。可能的原因是高等真核生物中GC含量升高,或者是染色体重组使这些同源序列位于不同的等质区段,从而受到不同的选择突变压。密码内各位点上核苷酸替代的相关性分析表明不同位点的替代是非独立的,其原因可能是一次替代事件引起多个位点的变化。文中讨论了这些结果对进化树推断的意义。  相似文献   

7.
We study to what degree patterns of amino acid substitution vary between genes using two models of protein-coding gene evolution. The first divides the amino acids into groups, with one substitution rate for pairs of residues in the same group and a second for those in differing groups. Unlike previous applications of this model, the groups themselves are estimated from data by simulated annealing. The second model makes substitution rates a function of the physical and chemical similarity between two residues. Because we model the evolution of coding DNA sequences as opposed to protein sequences, artifacts arising from the differing numbers of nucleotide substitutions required to bring about various amino acid substitutions are avoided. Using 10 alignments of related sequences (five of orthologous genes and five gene families), we do find differences in substitution patterns. We also find that, although patterns of amino acid substitution vary temporally within the history of a gene, variation is not greater in paralogous than in orthologous genes. Improved understanding of such gene-specific variation in substitution patterns may have implications for applications such as sequence alignment and phylogenetic inference.  相似文献   

8.
An antioxidant enzymatic system is pivotal for aerobic animals to minimize the damage induced by reactive oxygen species. Spontaneous mutant animals with altered antioxidant enzyme activity should be useful for the study of the function of these enzymes in vivo. We examined the nucleotide sequences of the genes for the major antioxidant enzymes, including catalase (Cat), superoxide dismutase (Sod1, Sod2, Sod3), glutathione peroxidase (Gpx1, Gpx2, Gpx3, Gpx4, Gpx5), and glutathione reductase (Gsr) in 10 inbred mouse strains. Nonsynonymous nucleotide polymorphisms were identified in all genes, except for Gpx1, Gpx3, and Gpx4. Notably, the SJL/J mouse strain possessed unique nucleotide substitutions in the Gsr and Sod2 genes, which led to Asp39Ala and Val138Met amino acid substitutions in GSR and SOD2, respectively. The specific activity of GSR of SJL/J mice was reduced to 65% of that of NZB/N mice. In vivo activity, however, was higher in SJL/J, due to upregulated expression of the enzyme. The SOD2 activity in SJL/J mice was reduced to half that of other mouse strains. Consistent with this reduction, oxidative damage in the mitochondria was increased as demonstrated by a decrease of total glutathione and an increase in the levels of protein oxidation. These spontaneous hypomorphic alleles would be valuable in the study of free radical biology.  相似文献   

9.
Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of approximately 5. 5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka /Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands.  相似文献   

10.
Summary A method for estimating the evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences is presented. This method is applied to genes of øX174 and G4 genomes, histone genes and-globin genes, for which homologous nucleotide sequences are available for comparison to be made. It is shown that the rates of synonymous substitutions are quite uniform among the non-overlapping genes of øX174 and G4 and among histone genes H4, H2B, H3 and H2A. A comparison between øX174 and G4 reveals that, in the overlapping segments of the A-gene, the rate of synonymous substitution is reduced more significantly than the rate of amino acid substitution relative to the corresponding rate in the nonoverlapping segment. It is also suggested that, in the coding regions surrounding the splicing points of intervening sequences of-globin genes, there exist rigid secondary structures. It is in only these regions that the-globin genes show the slowing down of evolutionary rates of both synonymous and amino acid substitutions in the primate line.  相似文献   

11.
We conducted a genome-wide analysis of variations in guanine plus cytosine (G+C) content at the third codon position at silent substitution sites of orthologous human and mouse protein-coding nucleotide sequences. Alignments of 3776 human protein-coding DNA sequences with mouse orthologs having >50 synonymous codons were analyzed, and nucleotide substitutions were counted by comparing sequences in the alignments extracted from gap-free regions. The G+C content at silent sites in these pairs of genes showed a strong negative correlation (r = -0.93). Some gene pairs showed significant differences in G+C content at the third codon position at silent substitution sites. For example, human thymine-DNA glycosylase was A+T-rich at the silent substitution sites, while the orthologous mouse sequence was G+C-rich at the corresponding sites. In contrast, human matrix metalloproteinase 23B was G+C-rich at silent substitution sites, while the mouse ortholog was A+T-rich. We discuss possible implications of this significant negative correlation of G+C content at silent sites.  相似文献   

12.
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.  相似文献   

13.
Estimation of evolutionary distance between nucleotide sequences   总被引:34,自引:9,他引:25  
A mathematical formula for estimating the average number of nucleotide substitutions per site (delta) between two homologous DNA sequences is developed by taking into account unequal rates of substitution among different nucleotide pairs. Although this formula is obtained for the equal-input model of nucleotide substitution, computer simulations have shown that it gives a reasonably good estimate for a wide range of nucleotide substitution patterns as long as delta is equal to or smaller than 1. Furthermore, the frequency of cases to which the formula is inapplicable is much lower than that for other similar methods recently proposed. This point is illustrated using insulin genes. A statistical method for estimating the number of nucleotide changes due to deletion and insertion is also developed. Application of this method to globin gene data indicates that the number of nucleotide changes per site increases with evolutionary time but the pattern of the increase is quite irregular.   相似文献   

14.
Respiratory syncytial (RS) virus causes repeated infections throughout life. Between the two main antigenic subgroups of RS virus, there is antigenic variation in the attachment protein G. The antigenic differences between the subgroups appear to play a role in allowing repeated infections to occur. Antigenic differences also occur within subgroups; however, neither the extent of these differences nor their contributions to repeat infections are known. We report a molecular analysis of the extent of diversity within the subgroup B RS virus attachment protein genes of viruses isolated from children over a 30-year period. Amino acid sequence differences as high as 12% were observed in the ectodomains of the G proteins among the isolates, whereas the cytoplasmic and transmembrane domains were highly conserved. The changes in the G-protein ectodomain were localized to two areas on either side of a highly conserved region surrounding four cysteine residues. Strikingly, single-amino-acid coding changes generated by substitution mutations were not the only means by which change occurred. Changes also occurred by (i) substitutions that changed the available termination codons, resulting in proteins of various lengths, and (ii) a mutation introduced by a single nucleotide deletion and subsequent nucleotide insertion, which caused a shift in the open reading frame of the protein in comparison to the other G genes analyzed. Fifty-one percent of the G-gene nucleotide changes observed among the isolates resulted in amino acid coding changes in the G protein, indicating a selective pressure for change. Maximum-parsimony analysis demonstrated that distinct evolutionary lineages existed. These data show that sequence diversity exists among the G proteins within the subgroup B RS viruses, and this diversity may be important in the immunobiology of the RS viruses.  相似文献   

15.
We describe two novel arrangements of the human fetal globin gene region: one chromosome with two linked A gamma genes (A gamma-A gamma) and two chromosomes with two linked G gamma genes (G gamma-G gamma). The gamma genes of these three chromosomes were cloned and the unusual 5' A gamma gene and one of the unusual 3' G gamma genes were partially sequenced. Both of these unusual genes differ from the genes normally found at their respective locations by a nucleotide substitution at the site of the single coding region difference between normal G gamma and A gamma genes. In both cases, the substitution is identical to the nucleotide found at that position in the normal neighboring gene. The unusual 3' G gamma gene also differs from normal A gamma genes at two other nucleotide positions, but both differences appear to be "private" or exclusive to this particular gene. These unusual fetal globin gene arrangements could have arisen from point mutations or from gene conversions of limited extent, the boundaries of which have been determined for all three chromosomes.  相似文献   

16.
Opinions split when it comes to the significance and thus the weighting of indel characters as phylogenetic markers. This paper attempts to test the phylogenetic information content of indels and nucleotide substitutions by proposing an a priori weighting system of non-protein-coding genes. Theoretically, the system rests on a weighting scheme which is based on a falsificationist approach to cladistic inference. It provides insertions, deletions and nucleotide substitutions weights according to their specific number of identical classes of potential falsifiers, resulting in the following system: nucleotide substitutions weight = 3, deletions of n nucleotides weight = (2n–1), and insertions of n nucleotides weight = (5n–1). This weighting system and the utility of indels as phylogenetic markers are tested against a suitable data set of 18S rDNA sequences of Diptera and Strepsiptera taxa together with other Metazoa species. The indels support the same clades as the nucleotide substitution data, and the application of the weighting system increases the corresponding consistency indices of the differentially weighted character types. As a consequence, applying the weighting system seems to be reasonable, and indels appear to be good phylogenetic markers.  相似文献   

17.
Melanocortin 1-receptor (MC1R) is one of the major genes that controls chicken plumage colour. In this study, we investigated the sequence and haplotype distribution of the MC1R gene in native Japanese chickens, along with non-Japanese chicken breeds. In total, 732 and 155 chickens from 30 Japanese and eight non-Japanese breeds respectively were used. Three synonymous and 11 non-synonymous nucleotide substitutions were detected, resulting in 15 haplotypes (H0–H14). Of these, three were newly found haplotypes (H9, H13 and H14), of which one (H9) was composed of known substitutions C69T, T212C, G274A and G636A. The second one (H13) possessed newly found non-synonymous substitution C919G, apart from the known substitutions C69T, G178A, G274A, G636A and T637C. The third one (H14) comprised a newly discovered substitution C919G in addition to the known C69T, G274A and G409A substitutions. The homozygote for this new haplotype exhibited wt like plumage despite the presence of G274A. In addition to discovering a new nucleotide substitution (C919G) and three new haplotypes, we defined the plumage colour of the bird that was homozygous for the A644C substitution (H5 haplotype) as wheaten-like for the first time; although the substitution has been already reported, its effect was not revealed. Besides detecting the new plumage colour, we also confirmed that the A427G and G274A substitutions contribute in expressing brownish and black plumage colour respectively, as reported by the previous studies. Moreover, we confirmed that the buttercup allele does not express black plumage despite possessing a G274A substitution, under the suppression effect of A644C. In contrast, the birds homozygous for the birchen allele presented solid black plumage, which was contradictory to the previous reports. In conclusion, we revealed a large diversity in the MC1R gene of native Japanese chicken breeds, along with the discovery of a new non-synonymous nucleotide substitution (C919G) and three novel haplotypes (H9, H13 and H14).  相似文献   

18.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts was located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

19.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts is located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

20.
The nucleotide sequences of a segment of mitochondrial DNA (mtDNA) have been determined for nine species or subspecies of the subgenus Drosophila of the genus Drosophila. This segment contains two complete protein-coding genes (i.e., NADH dehydrogenase subunit 1 and cytochrome b) and a transfer RNA gene (tRNA(ser)). The G+C content at third-codon positions for the two protein-coding genes was 1.5 times higher than that in the D. melanogaster species group, which belongs to the subgenus Sophophora. However, there was a substantial difference between the nucleotide frequencies of G and C. The number of nucleotide substitutions per silent site was more than three times higher than that for nuclear DNA, although it was only 60% of that for mammalian mtDNA. Both parametric and nonparametric analyses revealed a strong transition-transversion bias in nucleotide substitution, as was observed in mammalian mtDNA. Moreover, the rate of substitution of A and T for G and C is higher than that for the opposite direction. This bias seems to be responsible for the extremely A+T-rich base composition of Drosophila mtDNA. It is also noted that the rate of transitional change between A and G is higher than that between T and C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号