首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
To study the rate and pattern of nucleotide substitution in mitochondrial DNA (mtDNA), we cloned and sequenced a 975-bp segment of mtDNA from Drosophila melanogaster, D. simulans, and D. mauritiana containing the genes for three transfer RNAs and parts of two protein- coding genes, ND2 and COI. Statistical analysis of synonymous substitutions revealed a predominance of transitions over transversions among the three species, a finding differing from previous results obtained from a comparison of D. melanogaster and D. yakuba. The number of transitions observed was nearly the same for each species comparison, including D. yakuba, despite the differences in divergence times. However, transversions seemed to increase steadily with increasing divergence time. By contrast, nonsynonymous substitutions in the ND2 gene showed a predominance of transversions over transitions. Most transversions were between A and T and seemed to be due to some kind of mutational bias to which the A + T-rich mtDNA of Drosophila species may be subject. The overall rate of nucleotide substitution in Drosophila mtDNA appears to be slightly faster (approximately 1.4 times) than that of the Adh gene. This contrasts with the result obtained for mammals, in which the mtDNA evolves approximately 10 times faster than single-copy nuclear DNA. We have also shown that the start codon of the COI gene is GTGA in D. simulans and GTAA in D. mauritiana. These codons are different from that of D. melanogaster (ATAA).   相似文献   

2.
T J Crease 《Gene》1999,233(1-2):89-99
The sequence of the mitochondrial DNA (mtDNA) of the branchiopod crustacean Daphnia pulex has been completed. It is 15333bp with an A+T content of 62.3%, and contains the typical complement of 13 protein-coding, 22 transfer RNA (tRNA) and two ribosomal RNA (rRNA) genes. Comparison of this sequence with the sequences of the other eight completely sequenced arthropod mtDNAs showed that gene order and orientation are identical to that of Drosophila but different from Artemia due to the rearrangement of two tRNA genes. Nucleotide composition, codon usage, and amino acid composition are very similar in the crustaceans, but divergent from insects and chelicerates which show a much higher bias towards A+T. However, with few exceptions, the mitochondrial proteins of Daphnia are more similar to those of the dipteran insects (Drosophila and Anopheles) than to those of Artemia, at both the nucleotide and amino acid levels, suggesting that Artemia mtDNA is evolving at an accelerated rate. These results also show that sequence evolution and the evolution of nucleotide composition can be decoupled. Analysis of nucleotide substitution patterns in COII showed that there has been an unbiased acceleration of the overall substitution rate in Artemia. In contrast, the accelerated substitution rate in Apis is due partly to extreme A+T mutation pressure. Secondary structures are proposed for the Daphnia tRNAs and rRNAs. The tRNAs are similar to those of other arthropods but tend to have TPsiC arms that are only 4bp long. The rRNA secondary structures are similar to those proposed for insects except for the absence of a small number of helices in Daphnia. Phylogenetic analysis of second codon positions grouped Daphnia with Artemia, as expected, despite the latter's accelerated divergence rate. In contrast, the unusual pattern of mtDNA divergence in Apis led to a topology in which the holometabolous insects (Anopheles, Drosophila, Apis) appeared to be paraphyletic with respect to the hemimetabolous insect, Locusta, due to the early branching of Apis.  相似文献   

3.
Sequence Evolution of Drosophila Mitochondrial DNA   总被引:18,自引:3,他引:15       下载免费PDF全文
We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, which is in contrast to the vast excess of transitions over transversions in mammalian mtDNAs. In Drosophila mtDNAs the frequency of C----T substitutions per codon in the third position is 2.5 times greater among codons of two-codon families than among codons of four-codon families; this is contrary to the hypothesis that third position silent substitutions are neutral in regard to selection. In the third position of codons of four-codon families transversions are 4.6 times more frequent than transitions and A----T substitutions account for 86% of all transversions. Ninety-four percent of all codons in the Drosophila mtDNA segments analyzed end in A or T. However, as this alone cannot account for the observed high frequency of A----T substitutions there must be either a disproportionately high rate of A----T mutation in Drosophila mtDNA or selection bias for the products of A----T mutation. --Consideration of the frequencies of interchange of AGA and AGT codons in the corresponding D. yakuba and D. melanogaster mitochondrial protein genes provides strong support for the view that AGA specifies serine in the Drosophila mitochondrial genetic code.  相似文献   

4.
R. Garesse 《Genetics》1988,118(4):649-663
The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G + C on both strands. The predominant type of transition is strand specific.  相似文献   

5.
2种珍稀裂腹鱼类线粒体DNA部分序列片段的比较分析   总被引:3,自引:0,他引:3  
对扁吻鱼(Aspiorhynchus laticeps)及塔里木裂腹鱼(Schizothorax biddulphi)线粒体CO I(624 bp)、Cyt b(712 bp)和D-loop(457 bp)基因片段进行了PCR扩增和序列测定.通过分析比较发现,3个片段A+T含量与其他鱼类相比均较高,G含量偏低这一现象在...  相似文献   

6.
The ribosomal RNA genes of Drosophila mitochondrial DNA.   总被引:12,自引:3,他引:9       下载免费PDF全文
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba which contains the A+T-rich region and the small and large rRNA genes separated by the tRNAval gene has been determined. The 5' end of the small rRNA gene was located by S1 protection analysis. In contrast to mammalian mtDNA, a tRNA gene was not found at the 5' end of the D. yakuba small rRNA gene. The small and large rRNA genes are 20.7% and 16.7% G+C and contain only 789 and 1326 nucleotides. The 5' regions of the small rRNA gene (371 nucleotides) and of the large rRNA gene (643 nucleotides) are extremely low in G+C (14.6% and 9.5%, respectively) and convincing sequence homologies between these regions and the corresponding regions of mouse mt-rRNA genes were found only for a few short segments. Nevertheless, the entire lengths of both of the D. yakuba mt-rRNA genes can be folded into secondary structures which are remarkably similar to secondary structures proposed for the rRNAs of mouse mtDNA. The replication origin-containing, A+T-rich region (1077 nucleotides; 92.8% A+T), which lies between the tRNAile gene and the small rRNA gene, lacks open reading frames greater than 123 nucleotides.  相似文献   

7.
Mitochondrial DNA sequences of primates: Tempo and mode of evolution   总被引:98,自引:0,他引:98  
Summary We cloned and sequenced a segment of mitochondrial DNA from human, chimpanzee, gorilla, orangutan, and gibbon. This segment is 896 bp in length, contains the genes for three transfer RNAs and parts of two proteins, and is homologous in all 5 primates. The 5 sequences differ from one another by base substitutions at 283 positions and by a deletion of one base pair. The sequence differences range from 9 to 19% among species, in agreement with estimates from cleavage map comparisons, thus confirming that the rate of mtDNA evolution in primates is 5 to 10 times higher than in nuclear DNA. The most striking new finding to emerge from these comparisons is that transitions greatly outnumber transversions. Ninety-two percent of the differences among the most closely related species (human, chimpanzee, and gorilla) are transitions. For pairs of species with longer divergence times, the observed percentage of transitions falls until, in the case of comparisons between primates and non-primates, it reaches a value of 45. The time dependence is probably due to obliteration of the record of transitions by multiple substitutions at the same nucleotide site. This finding illustrates the importance of choosing closely related species for analysis of the evolutionary process. The remarkable bias toward transitions in mtDNA evolution necessitates the revision of equations that correct for multiple substitutions at the same site. With revised equations, we calculated the incidence of silent and replacement substitutions in the two protein-coding genes. The silent substitution rate is 4 to 6 times higher than the replacement rate, indicating strong functional constraints at replacement sites. Moreover, the silent rate for these two genes is about 10% per million years, a value 10 times higher than the silent rate for the nuclear genes studied so far. In addition, the mean substitution rate in the three mitochondrial tRNA genes is at least 100 times higher than in nuclear tRNA genes. Finally, genealogical analysis of the sequence differences supports the view that the human lineage branched off only slightly before the gorilla and chimpanzee lineages diverged and strengthens the hypothesis that humans are more related to gorillas and chimpanzees than is the orangutan.Abbreviations mtDNA mitochondrial DNA - bp base pair - URF unidentified reading frame  相似文献   

8.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

9.
We conducted a genome-wide analysis of variations in guanine plus cytosine (G+C) content at the third codon position at silent substitution sites of orthologous human and mouse protein-coding nucleotide sequences. Alignments of 3776 human protein-coding DNA sequences with mouse orthologs having >50 synonymous codons were analyzed, and nucleotide substitutions were counted by comparing sequences in the alignments extracted from gap-free regions. The G+C content at silent sites in these pairs of genes showed a strong negative correlation (r = -0.93). Some gene pairs showed significant differences in G+C content at the third codon position at silent substitution sites. For example, human thymine-DNA glycosylase was A+T-rich at the silent substitution sites, while the orthologous mouse sequence was G+C-rich at the corresponding sites. In contrast, human matrix metalloproteinase 23B was G+C-rich at silent substitution sites, while the mouse ortholog was A+T-rich. We discuss possible implications of this significant negative correlation of G+C content at silent sites.  相似文献   

10.
Mammalian gene evolution: Nucleotide sequence divergence between mouse and rat   总被引:16,自引:0,他引:16  
As a paradigm of mammalian gene evolution, the nature and extent of DNA sequence divergence between homologous protein-coding genes from mouse and rat have been investigated. The data set examined includes 363 genes totalling 411 kilobases, making this by far the largest comparison conducted between a single pair of species. Mouse and rat genes are on average 93.4% identical in nucleotide sequence and 93.9% identical in amino acid sequence. Individual genes vary substantially in the extent of nonsynonymous nucleotide substitution, as expected from protein evolution studies; here the variation is characterized. The extent of synonymous (or silent) substitution also varies considerably among genes, though the coefficient of variation is about four times smaller than for nonsynonymous substitutions. A small number of genes mapped to the X-chromosome have a slower rate of molecular evolution than average, as predicted if molecular evolution is male-driven. Base composition at silent sites varies from 33% to 95% G + C in different genes; mouse and rat homologues differ on average by only 1.7% in silent-site G + C, but it is shown that this is not necessarily due to any selective constraint on their base composition. Synonymous substitution rates and silent site base composition appear to be related (genes at intermediate G + C have on average higher rates), but the relationship is not as strong as in our earlier analyses. Rates of synonymous and nonsynonymous substitution are correlated, apparently because of an excess of substitutions involving adjacent pairs of nucleotides. Several factors suggest that synonymous codon usage in rodent genes is not subject to selection.  相似文献   

11.
The rates and patterns of molecular evolution in many eukaryotic organisms have been shown to be influenced by the compartmentalization of their genomes into fractions of distinct base composition and mutational properties. We have examined the Drosophila genome to explore relationships between the nucleotide content of large chromosomal segments and the base composition and rate of evolution of genes within those segments. Direct determination of the G + C contents of yeast artificial chromosome clones containing inserts of Drosophila melanogaster DNA ranging from 140-340 kb revealed significant heterogeneity in base composition. The G + C content of the large segments studied ranged from 36.9% G + C for a clone containing the hunchback locus in polytene region 85, to 50.9% G + C for a clone that includes the rosy region in polytene region 87. Unlike other organisms, however, there was no significant correlation between the base composition of large chromosomal regions and the base composition at fourfold degenerate nucleotide sites of genes encompassed within those regions. Despite the situation seen in mammals, there was also no significant association between base composition and rate of nucleotide substitution. These results suggest that nucleotide sequence evolution in Drosophila differs from that of many vertebrates and does not reflect distinct mutational biases, as a function of base composition, in different genomic regions. Significant negative correlations between codon-usage bias and rates of synonymous site divergence, however, provide strong support for an argument that selection among alternative codons may be a major contributor to variability in evolutionary rates within Drosophila genomes.  相似文献   

12.
Summary Restriction sites were compared in the mitochondrial DNA (mtDNA) molecules from representatives of two closely related species of fruit flies: nine strains ofDrosophila teissieri and eight strains ofDrosophila yakuba. Nucleotide diversities amongD. teissieri strains and amongD. yakuba strains were 0.07% and 0.03%, respectively, and the nucleotide distance between the species was 0.22%. Also determined was the nucleotide sequence of a 2305-nucleotide pari (ntp) segment of the mtDNA molecule ofD. teissieri that contains the noncoding adenine+thymine (A+T)-rich region (1091 ntp) as well as the genes for the mitochondrial small-subunit rRNA, tRNAf-met, tRNAgln, and tRNAile, and portions of the ND2 and tRNAval genes. This sequence differs from the corresponding segment of theD. yakuba mtDNA by base substitutions at 0.1% and 0.8% of the positions in the coding and noncoding regions, respectively. The higher divergence due to base substitutions in the A+T-rich region is accompanied by a greater number of insertions/deletions than in the coding regions. From alignment of theD. teissieri A+T-rich sequence with those ofD. yakuba andDrosophila virilis, it appears that the 40% of this sequence that lies adjacent to the tRNAile gene has been highly conserved. Divergence between the entireD. teissieri andD. yakuba mtDNA molecules, estimated from the sequences, was 0.3%; this value is close to the value (0.22%) obtained from the restriction analysis, but 10 times lower than the value estimated from published DNA hybridization results. From consideration of the relationships of mitochondrial nucleotide distance and allozyme genetic distance found among seven species of theDrosophila melanogaster subgroup, the mitochondrial nucleotide distance observed forD. teissieri andD. yakuba is anomalously low in relation to the nuclear genetic distance.  相似文献   

13.
14.
We show that in animal mitochondria homologous genes that differ in guanine plus cytosine (G + C) content code for proteins differing in amino acid content in a manner that relates to the G + C content of the codons. DNA sequences were analyzed using square plots, a new method that combines graphical visualization and statistical analysis of compositional differences in both DNA and protein. Square plots divide codons into four groups based on first and second position A + T (adenine plus thymine) and G + C content and indicate differences in amino acid content when comparing sequences that differ in G + C content. When sequences are compared using these plots, the amino acid content is shown to correlate with the nucleotide bias of the genes. This amino acid effect is shown in all protein-coding genes in the mitochondrial genome, including cox I, cox II, and cyt b, mitochondrial genes which are commonly used for phylogenetic studies. Furthermore, nucleotide content differences are shown to affect the content of all amino acids with A + T- and G + C-rich codons. We speculate that phylogenetic analysis of genes so affected may tend erroneously to indicate relatedness (or lack thereof) based only on amino acid content. Received: 3 July 1996 / Accepted: 6 November 1996  相似文献   

15.
Most of the well-characterized mitochondrial genomes from diverse green algal lineages are circular mapping DNA molecules; however, Chlamydomonas reinhardtii has a linear 15.8 kb unit mitochondrial genome with 580 or 581 bp inverted repeat ends. In mitochondrial-enriched fractions prepared from Polytomella parva (=P. agilis), a colorless, naturally wall-less relative of C. reinhardtii, we have detected two linear mitochondrial DNA (mtDNA) components with sizes of 13.5 and 3.5 kb. Sequences spanning 97% and 86% of the 13.5- and 3.5-kb mtDNAs, respectively, reveal that these molecules contain long, at least 1.3 kb, homologous inverted repeat sequences at their termini. The 3.5-kb mtDNA has only one coding region (nad6), the functionality of which is supported by both the relative rate at which it has accumulated nonsynonymous nucleotide substitutions and its absence from the 13.5-kb mtDNA which encodes nine genes (i.e., large and small subunit rRNA [LSU and SSU rRNA] genes, one tRNA gene, and six protein-coding genes). On the basis of DNA sequence data, we propose that a variant start codon, GTG, is utilized by the P. parva 13.5-kb mtDNA-encoded gene, nad5. Using the relative rate test with Chlamydomonas moewusii (=C. eugametos) as the outgroup, we conclude that the nonsynonymous nucleotide substitution rate in the mitochondrial protein-coding genes of P. parva is on an average about 3.3 times that of the C. reinhardtii counterparts.  相似文献   

16.
S. Kumar 《Genetics》1996,143(1):537-548
Maximum likelihood methods were used to study the differences in substitution rates among the four nucleotides and among different nucleotide sites in mitochondrial protein-coding genes of vertebrates. In the 1st+2nd codon position data, the frequency of nucleotide G is negatively correlated with evolutionary rates of genes, substitution rates vary substantially among sites, and the transition/transversion rate bias (R) is two to five times larger than that expected at random. Generally, largest transition biases and greatest differences in substitution rates among sites are found in the highly conserved genes. The 3rd positions in placental mammal genes exhibit strong nucleotide composition biases and the transitional rates exceed transversional rates by one to two orders of magnitude. Tamura-Nei and Hasegawa-Kishino-Yano models with gamma distributed variable rates among sites (gamma parameter, α) adequately describe the nucleotide substitution process in 1st+2nd position data. In these data, ignoring differences in substitution rates among sites leads to largest biases while estimating substitution rates. Kimura's two-parameter model with variable-rates among sites performs satisfactorily in likelihood estimation of R, α, and overall amount of evolution for 1st+2nd position data. It can also be used to estimate pairwise distances with appropriate values of α for a majority of genes.  相似文献   

17.
以暗纹东方鲀(Takifugu fasciatus)肝的线粒体DNA为模板,参照红鳍东方鲀(T.rubripes)等近源鱼类的线粒体基因组DNA序列,设计合成14对特异引物,进行PCR扩增并测序,首次获得了暗纹东方鲀线粒体基因组全序列。结果表明,暗纹东方鲀线粒体基因组序列全长16 444 bp(GenBank登录号为GQ409967),A+T含量为55.8%,其mtDNA结构与其他脊椎动物相似,由22个tRNA基因、2个rRNA基因、13个蛋白质编码基因和1段819 bp非编码的控制区(D-loop)所组成。蛋白质基因除COⅠ和ND6的起始密码子为GTG、CCT以外,均为典型的起始密码子ATG。ND1、ATPase8、COⅢ、ND4L、ND5、Cyt b使用典型的终止密码子TAA,其他的使用不完全终止密码子。除ND6和tRNAGln、tRNAAla、tRNAAsn、tRNACys、tRNATyr、tRNASer、tRNAGlu、tRNAPro在L-链上编码之外,其余基因均在H-链编码。基因排列顺序与已测定的鲀类一致,这显示了鲀类线粒体基因排列顺序上的保守性。tRNA基因核苷酸长度为64~73nt,预测了22个tRNA基因的二级结构,均呈较为典型的三叶草状。基于19种鲀类mtDNA全序列构建的进化树表明,暗纹东方鲀与红鳍东方鲀、中华东方鲀(T.chinensis)聚成一个姊妹群。结果还支持东方鲀属鱼类为一单系类群。  相似文献   

18.
Human mitochondrial DNA (mtDNA) is a nonrecombining genome that codes for 13 subunits of the mitochondrial oxidative phosphorylation system, 2 rRNAs, and 22 tRNAs. Mutations have accumulated sequentially in mtDNA lineages that diverged tens of thousands of years ago. The genes in mtDNA are subject to different functional constraints and are therefore expected to evolve at different rates, but the rank order of these rates should be the same in all lineages of a phylogeny. Previous studies have indicated, however, that specific regions of mtDNA may have experienced different histories of selection in different lineages, possibly because of lineage-specific interactions or environmental factors such as climate. We report here on a survey for lineage-specific patterns of nucleotide polymorphism in human mtDNA. We calculated molecular polymorphism indices and neutrality tests for classes of functional sites and genes in 837 human mtDNA sequences, compared the results between continent-specific mtDNA lineages, and used two sliding window methods to identify differences in the patterns of polymorphism between haplogroups. A general correlation between nucleotide position and the level of nucleotide polymorphism was identified in the coding region of the mitochondrial genome. Nucleotide diversity in the protein-coding sequence of mtDNA was generally not much higher than that found for many genes in nuclear DNA. A comparison of nonsynonymous/synonymous rate ratios in the 13 protein-coding genes suggested differences in the relative levels of selection between haplogroups, including the European haplogroup clusters. Interestingly, a segment of the MTND5 gene was found to be almost void of segregating sites and nonsynonymous mutations in haplogroup J, which has been associated with susceptibility to certain complex diseases. Our results suggest that there are haplogroup-specific differences in the intensity of selection against particular regions of the mitochondrial genome, indicating that some mutations may be non-neutral within specific phylogenetic lineages but neutral within others.  相似文献   

19.
BACKGROUND: Nucleotide substitution rates and G + C content vary considerably among mammalian genes. It has been proposed that the mammalian genome comprises a mosaic of regions - termed isochores - with differing G + C content. The regional variation in gene G + C content might therefore be a reflection of the isochore structure of chromosomes, but the factors influencing the variation of nucleotide substitution rate are still open to question. RESULTS: To examine whether nucleotide substitution rates and gene G + C content are influenced by the chromosomal location of genes, we compared human and murid (mouse or rat) orthologues known to belong to one of the chromosomal (autosomal) segments conserved between these species. Multiple members of gene families were excluded from the dataset. Sets of neighbouring genes were defined as those lying within 1 centiMorgan (cM) of each other on the mouse genetic map. For both synonymous substitution rates and G + C content at silent sites, neighbouring genes were found to be significantly more similar to each other than sets of genes randomly drawn from the dataset. Moreover, we demonstrated that the regional similarities in G + C content (isochores) and synonymous substitution rate were independent of each other. CONCLUSIONS: Our results provide the first substantial statistical evidence for the existence of a regional variation in the synonymous substitution rate within the mammalian genome, indicating that different chromosomal regions evolve at different rates. This regional phenomenon which shapes gene evolution could reflect the existence of 'evolutionary rate units' along the chromosome.  相似文献   

20.
T Takano-Shimizu 《Genetics》1999,153(3):1285-1296
I studied the cause of the significant difference in the synonymous-substitution pattern found in the achaete-scute complex genes in two Drosophila lineages, higher codon bias in Drosophila yakuba, and lower bias in D. melanogaster. Besides these genes, the functionally unrelated yellow gene showed the same substitution pattern, suggesting a region-dependent phenomenon in the X-chromosome telomere. Because the numbers of A/T --> G/C substitutions were not significantly different from those of G/C --> A/T in the yellow noncoding regions of these species, a AT/GC mutational bias could not completely account for the synonymous-substitution biases. In contrast, we did find an approximately 14-fold difference in recombination rates in the X-chromosome telomere regions between the two species, suggesting that the reduction of recombination rates in this region resulted in the reduction of the efficacy of selection in D. melanogaster. In addition, the D. orena yellow showed a 5% increase in the G + C content at silent sites in the coding and noncoding regions since the divergence from D. erecta. This pattern was significantly different from those at the orena Adh and Amy loci. These results suggest that local changes in recombination rates and mutational pressures are contributing to the irregular synonymous-substitution patterns in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号