首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Genetic variation and diversity were estimated for three improved varieties and 18 landraces of Secale cereale, originating from the northern Europe. This material was compared with eight improved varieties and 16 landraces from Sweden, which were analysed before. The analysis used starch gel electrophoresis with the enzymes ACO, GPI, MDH, PGD and PGM and resulted in one fixed locus and seven polymorphic loci. Most of the genetic diversity was found within the accessions and it was very small between accessions. The results show that the landraces from Germany and Norway have a low genetic variation compared to the other landraces in this study. This can possibly be explained with a small original sample size of some accessions. However, in the dendrogram these accessions are well separated. The landraces from Sweden and Finland showed a high genetic variation, which is almost the same for all these accessions. In the dendrogram all of the Finnish landraces and 11 of the Swedish ones were grouped together with a very small diversity index; they can almost be considered as part of the same accession. This is probably due to the fact that a high number of Finnish immigrants arrived in Sweden during the 17th century bringing their own rye material. The early Finnish rye landraces may have the same original source. The data also show that landraces as well as improved varieties have a high heterozygosity but they are separated in the dendrogram into different clusters. The currently used varieties show a large genetic distance variation, different from that in the landraces.  相似文献   

2.
Molecular‐marker‐aided evaluation of germplasm plays an important role in defining the genetic diversity of plant genotypes for genetic and population improvement studies. A collection of African cassava landraces and elite cultivars was analysed for genetic diversity using 20 amplified fragment length polymorphic (AFLP) DNA primer combinations and 50 simple sequence repeat (SSR) markers. Within‐population diversity estimates obtained with both markers were correlated, showing little variation in their fixation index. The amount of within‐population variation was higher for landraces as illustrated by both markers, allowing discrimination among accessions along their geographical origins, with some overlap indicating the pattern of germplasm movement between countries. Elite cultivars were grouped in most cases in agreement with their pedigree and showed a narrow genetic variation. Both SSR and AFLP markers showed some similarity in results for the landraces, although SSR provided better genetic differentiation estimates. Genetic differentiation (Fst) in the landrace population was 0.746 for SSR and 0.656 for AFLP. The molecular variance among cultivars in both populations accounted for up to 83% of the overall variation, while 17% was found within populations. Gene diversity (He) estimated within each population varied with an average value of 0.607 for the landraces and 0.594 for the elite lines. Analyses of SSR data using ordination techniques identified additional cluster groups not detected by AFLP and also captured maximum variation within and between both populations. Our results indicate the importance of SSR and AFLP as efficient markers for the analysis of genetic diversity and population structure in cassava. Genetic differentiation analysis of the evaluated populations provides high prospects for identifying diverse parental combinations for the development of segregating populations for genetic studies and the introgression of desirable genes from diverse sources into the existing genetic base.  相似文献   

3.
选用45个SSR标记分析太湖流域荔枝红、老来青、太湖青和老虎稻共4组粳稻同名地方品种的遗传差异。结果表明:同名地方品种平均Nei遗传距离为0.120~0.171,遗传同一性程度较高,其中有8对同名品种难以区别,但多数品种仍然存在一定的遗传变异,且个别品种差异较大;同名品种遗传差异与种质来源、品种名称的近似程度没有关系。  相似文献   

4.
Genetic diversity among 45 Indian mustard (Brassica Juncea L.) genotypes comprising 37 germplasm collections, five advance breeding lines and three improved cultivars was investigated at the DNA level using the random amplified polymorphic DNA (RAPD) technique. Fifteen primers used generated a total of 92 RAPD fragments, of which 81 (88%) were polymorphic. Of these, 13 were unique to accession 'Pak85559'. Each primer produced four to nine amplified products with an average of 6.13 bands per primer. Based on pairwise comparisons of RAPD amplification products, Nei and Li's similarity coefficients were calculated to evaluate the relationships among the accessions. Pairwise similarity indices were higher among the oilseed accessions and cultivars showing narrow ranges of 0.77-0.99. An unweighted pair-group method with arithmetic averages cluster analysis based on these genetic similarities placed most of the collections and oilseed cultivars close to each other, showing a low level of polymorphism between the accessions used. However, the clusters formed by oilseed collections and cultivars were comparatively distinct from that of advanced breeding lines. Genetically, all of the accessions were classified into a few major groups and a number of individual accessions. Advanced breeding lines were relatively divergent from the rest of the accessions and formed independent clusters. Clustering of the accessions did not show any pattern of association between the RAPD markers and the collection sites. A low level of genetic variability of oilseed mustard was attributed to the selection for similar traits and horticultural uses. Perhaps close parentage of these accessions further contributed towards their little diversity. The study demonstrated that RAPD is a simple and fast technique to compare the genetic relationship and pattern of variation among the gene pool of this crop.  相似文献   

5.
Ma R  Yli-Mattila T  Pulli S 《Hereditas》2004,140(3):210-221
Genetic similarities among 20 spring and 22 winter accessions of agronomically different ryes from fourteen countries were estimated by employing random amplified polymorphic DNA (RAPD) techniques. Cluster analysis of genetic distance data showed that 42 genotypes were readily classifiable into two main groups: spring and winter groups. Within the spring group, cultivars fell into a North European and an American-Chinese group. Cultivars of winter rye fell into four groups: Northern European, Russian, American and Chinese lines. A UPGMA-dendrogram based on genetic distances of cultivars of rye within the winter and spring groups showed that the clusters corresponded well to their geographical locations. The results indicated that isolation has played an important role in the evolution of rye, and that temporal isolation has influenced the genetic diversity of rye more than geographical isolation. In this experiment, RAPD proved to be a rapid, reliable and practicable method of revealing polymorphisms in rye populations.  相似文献   

6.
利用RAPD标记分析大麦种质资源的遗传多样性   总被引:10,自引:4,他引:6  
利用RAPD标记对19份西藏近缘野生大麦材料、33份我国不同省市的地方品种以及8份国外引进大麦品种共60份大麦种质资源的遗传多样性进行检测.结果表明材料间遗传差异明显.32个RAPD引物中,有25个引物(占78.13%)可扩增出清晰且具多态性的条带,另外7个引物能扩增出1~3条清晰但无多态性的条带.每个引物可扩增出1~8条多态性带,平均为3.72条.32个引物共产生119条DNA片段,其中87条具有多态性,多态性比率(PPB)为73.11%,平均多态信息量(PIC)为0.434;每个位点平均有效等位基因数(Ne)为2.304;材料间遗传相似系数GS变化范围为0.757~0.981,平均值为0.871.19份来源于西藏的近缘野生大麦材料间GS值变幅为0.818~0.969,平均为0.892;33份我国栽培大麦地方品种间的GS值变化范围为0.783~0.981,平均为0.879;8份分别来自8个国家的栽培大麦品种间的GS值变幅为0.820~0.956,平均为0.882.根据RAPD标记分析的结果,对60份大麦种质资源进行聚类分析,在平均GS值0.871水平上60份大麦材料可聚为5类,聚类结果能在一定程度上反应材料的地理分布关系,但某些相同地理来源的材料也较分散地分布在整个聚类树中.本研究从分子水平上进一步证明了我国栽培大麦丰富的遗传多样性,是世界栽培大麦的遗传多样性中心之一.  相似文献   

7.
The primary aim of this study was to estimate genetic diversity among Secale cereale L. accessions using 22 previously published simple sequence repeat (SSR) markers. The plant material included 367 rye accessions comprising historical and contemporary cultivars, cultivated materials, landraces, and breeding strains from the Polish breeding company Danko. The studied accessions represented a wide geographical diversity. Several methods were employed to analyze genetic diversity among the Secale cereale L. accessions and to determine population structure: principal coordinate analysis (PCoA), neighbor-joining (NJ), and Bayesian clustering. We also defined a core collection of 25 rye accessions representing over 93 % of SSR alleles. The results of these analyses showed that accessions from the rye gene bank are clearly divergent in comparison with materials received directly from European breeding companies. Our findings suggest also that the genetic pool of current rye cultivars is becoming narrower during breeding processes. The selected panel of SSR markers performed well in detection of genetic diversity patterns and can be recommended for future germplasm characterization studies in rye.  相似文献   

8.
Genetic diversity among 49 Indian accessions of rice (Oryza sativa subsp. indica), including 29 landraces from Jeypore, 12 modern cultivars, and 8 traditional cultivars from Tamil Nadu, was investigated using AFLP markers. In total, nine primer combinations revealed 664 AFLPs, 408 of which were found to be polymorphic. The percentage of polymorphic AFLPs was approximately the same within the cultivars and landraces. Similar results were obtained when genetic diversity values were estimated using the Shannon-Weiner index of diversity. Genetic diversity was slightly higher in the modern cultivars than in the traditional cultivars from Tamil Nadu. Among the landraces from Jeypore, the lowland landraces showed the highest diversity. The present study showed that the process of breeding modern cultivars did not appear to cause significant genetic erosion in rice. Cluster analysis and the first component of principle component analysis (PCA) both showed a clear demarcation between the cultivars and landraces as separate groups, although the genetic distance between them was narrow. The modern cultivars were positioned between the landraces from Jeypore and the traditional cultivars from Tamil Nadu. The second component of PCA further separated medium and upland landraces from lowland landraces, with the lowland landraces found closest to the traditional and modern cultivars.  相似文献   

9.
Molecular analysis of 29 lentil (Lens culinaris) cultivars and landraces of Indian origin was carried out using twenty RAPD and ten cross-species STMS primers. A total of 97 markers (72 RAPD and 25 STMS) were amplified of which 42.3% were polymorphic. Genetic similarity among the cultivars and landraces was 89.7%. The observed results indicated low level of genetic diversity in the studied material. UPGMA cluster analysis for the combined data of RAPD and STMS revealed two broad clusters — Cluster I with three landraces and Cluster II containing all remaining landraces and cultivars except Precoz. Germplasm line Precoz was found to be the most distinct in individual as well as combined analyses. All cultivars and landraces except K-75 and L4076 could be discriminated from one another using combined data for the two techniques. Germplasm lines Precoz, L830 and cultivars L4147 and JL3 were quite distinct and could be potential germplasm resource.  相似文献   

10.
Four hundred years of chile(Capsicum annuum var.annuum) cultivation, together with concerns about losing genetic resources in their native agrohabitats, provide the pretext for collecting and preserving landraces of this species in New Mexico. The molecular analysis of these accessions provided a powerful means by which their genetic structures were characterized. Random amplified polymorphic DNA (RAPD) molecular markers were used to compare the relative genetic diversity of native chile landraces to the genetic diversity found in commercially available cultivars in the United States as well as landraces from Mexico.  相似文献   

11.
Matos M  Pinto-Carnide O  Benito C 《Hereditas》2001,134(3):229-236
The phylogenetic relationships of 10 rye landraces and cultivars from the north of Portugal and from Brazil were analysed using 20 isozyme loci, and a total of 511 PCR markers (342 ISSRs and 169 RAPDs). The isozymes were analysed in at least 100 plants of each population/cultivar and, therefore, we have data about intra and inter population/cultivar genetic variability. However, the analyses with ISSRs and RAPDs were obtained using a mix of 25 plants of each population. Therefore, each population/cultivar was reduced to one tube and we have no data about intra genetic variability. As expected in a cross pollinated crop we found genetic diversity and a larger variation within than among the populations using isozymes. Somewhat unexpectedly, however, we found that the breeding cultivars have the same level of heterozygosity as the landraces. The phylogenetic relationships obtained using isozymes among the landraces, synthetic cultivar and the cultivars from breeding programs do not reflect their origin. Moreover, the cultivar from Brazil is not separated from the remaining populations/cultivars studied. However, the data observed using RAPDs and ISSRs are in agreement with their known origin. The populations maintained by the farmers in the north of Portugal are grouped in a cluster in the phenogram and the C902591 (from Brazil), the Alv?o (synthetic variety) and Larouco (a hybrid between Montalegre and Brazil) are in a different cluster. The ISSRs and RAPDs provide a rapid method for the production of polymorphic markers, which appear to correspond to known pedigree information.  相似文献   

12.
G L Sun  O Díaz  B Salomon  R von Bothmer 《Génome》1999,42(3):420-431
Genetic diversity of 33 Elymus caninus accessions was investigated using isozyme, RAPD, and microsatellite markers. The three assays differed in the amount of polymorphism detected. Microsatellites detected the highest polymorphism. Six microsatellite primer pairs generated a total of 74 polymorphic bands (alleles), with an average of 15.7 bands per primer pair. Three genetic similarity matrices were estimated based on band presence or absence. Genetic diversity trees (dendrograms) were derived from each marker technique, and compared using Mantel's test. The correlation coefficients were 0.204, 0.267, and 0.164 between isozyme and RAPD distance matrices, RAPD and microsatellite distance matrices, and between isozyme and microsatellite distance matrices, respectively. The three methodologies gave differing views of the amount of variation present but all showed a high level of genetic variation in E. caninus. The following points may be drawn from this study whether based on RAPD, microsatellite, or isozyme data: (i) The Icelandic populations are consistently revealed by the three dendrograms. The congruence of the discrimination of this accession group by RAPD, microsatellite, and isozyme markers suggests that geographic isolation strongly influenced the evolution of the populations; (ii) The degree of genetic variation within accessions was notably great; and (iii) The DNA-based markers will be the more useful ones in detecting genetic diversity in closely related accessions. In addition, a dendrogram, which took into account all fragments produced by isozymes, RAPDs, and microsatellites, reflected better the relationships than did dendrograms based on only one type of marker.  相似文献   

13.
14.
Developing a better understanding of associations among ploidy level, geographic distribution, and genetic diversity of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to: (1) determine ploidy analysis of Cynodon accessions collected from Turkey, (2) investigate associations between ploidy level and diversity, (3) determine whether geographic and ploidy distribution are related to nuclear genome variation, and (4) correlate among four nuclear molecular marker systems for Cynodon accessions’ genetic analyses. One hundred and eighty-two Cynodon accessions collected in Turkey from an area south of the Taurus Mountains along the Mediterranean cost and ten known genotypes were genotyped using sequence related amplified polymorphism (SRAP), peroxidase gene polymorphism (POGP), inter-simple sequence repeat (ISSR), and random amplified polymorphic DNA (RAPD). The diploids, triploids, tetraploids, pentaploids, and hexaploids revealed by flow cytometry had a linear present band frequency of 0.36, 0.47, 0.49, 0.52, and 0.54, respectively. Regression analysis explained that quadratic relationship between ploidy level and band frequency was the most explanatory (r = 0.62, P < 0.001). The AMOVA results indicated that 91 and 94% of the total variation resided within ploidy level and provinces, respectively. The UPGMA analysis suggested that commercial bermudagrass cultivars only one-third of the available genetic variation. SRAP, POGP, ISSR, and RAPD markers differed in detecting relationships among the bermudagrass genotypes and rare alleles, suggesting more efficiency of combinatory analysis of molecular marker systems. Elucidating Cynodon accessions’ genetic structure can aid to enhance breeding programs and broaden genetic base of commercial cultivars. O. Gulsen and S. Sever-Mutlu contributed equally to this work.  相似文献   

15.
Randomly amplified polymorphic DNA (RAPD) markers were used for the identification of pigeonpea [Cajanus cajan (L.) Millsp.] cultivars and their related wild species. The use of single primers of arbitrary nucleotide sequence resulted in the selective amplification of DNA fragments that were unique to individual accessions. The level of polymorphism among the wild species was extremely high, while little polymorphism was detected within Cajanus cajan accessions. All of the cultivars and wild species under study could be easily distinguished with the help of different primers, thereby indicating the immense potential of RAPD in the genetic fingerprinting of pigeonpea. On the basis of our data the genetic relationship between pigeonpea cultivars and its wild species could be established.NCL Communication No. 6062  相似文献   

16.
Genetic diversity and relationships based on isozymes were studied in 31 accessions of turnip (Brassica rapa L. var. rapa). The material included varieties, elite stocks, landraces and older turnip of slash-and-burn type from the Nordic area. A total of 9 isozyme loci and 26 alleles were studied. The isozyme systems were ACO, DIA, GPI, GOT, PGM, PGD and SKD. The level of heterozygosity was reduced in the landraces, but it was high for the variety group 'Ostersundom'. Turnip has a higher genetic variation than other crops within B. rapa and than in other species with the same breeding system. The genetic diversity showed that 18.7% of the genetic variation was within the accessions, and the total H tau value was 0.358. Gpi-I and Pgd-I showed the lowest variation compared with the other loci. The cluster analysis revealed five clusters, with one main cluster including 25 of the 31 accessions. The dendrogram indicated that the variety group 'Ostersundom' clustered together whereas the variety group 'Bortfelder' was associated with country of origin. The landraces were spread in different clusters. The 'slash-and-burn' type of turnip belonged to two groups.  相似文献   

17.
Landraces and old, obsolete cultivars are a rich source of diversity and could become important and easy‐to‐use germplasm resources for breeding. They are characterised by yield stability, broad adaptation, tolerance to diseases and a greater competitiveness in the presence of weeds. The main objective of this study was to estimate and compare the genetic diversity among and within landraces, old cultivars and modern cultivars of common oat. Inter simple sequence repeats were used to study the genetic diversity of 12 modern Polish cultivars, 23 old Polish cultivars, 19 native landraces and 5 contemporary European cultivars. The results indicated a low amount of diversity among Polish modern cultivars, but an even lower diversity among old Polish cultivars, as well as large differences between these two gene pools. As expected, the landraces were the most diverse group and showed the highest internal variation. The landraces and old cultivars might serve as sources of useful alleles that have never been used in breeding. Additionally, it was possible to identify errors and inconsistencies in the passport data of gene‐bank accessions. These results can be applied to the maintenance and management of gene‐bank collections.  相似文献   

18.
Red clover is an important forage legume species for temperate regions and very little is known about the genetic organization of its breeding populations. We used random amplified polymorphic DNA (RAPD) genetic markers to address the genetic diversity and the distribution of variation in 20 breeding populations and cultivars from Chile, Argentina, Uruguay, and Switzerland. Genetic distances were calculated for all possible pairwise combinations. A high level of polymorphism was found and the proportion of polymorphic loci across populations was 74.2%. A population derived from a non-certified seedlot displayed a higher proportion of polymorphic loci than its respective certified seedlot. Gene diversity values and population genetics parameters suggest that the populations analyzed are diverse. An analysis of molecular variance (AMOVA) revealed that the largest proportion of variation (80.4%) resides at the within population level. RAPD markers are a useful tool for red clover breeding programs. A dendrogram based on genetic distances divided the breeding populations analyzed into three distinct groups. The amount and partition of diversity observed can be of value in identifying the populations that parents of synthetic cultivars are derived from and to exploit the variation available in the populations analyzed.  相似文献   

19.
The amount and distribution of genetic variation was investigated in 48 sorghum landrace accessions, representing 13 regions of origin and three adaptation zones (lowland, intermediate and highland elevation) in Ethiopia and Eritrea. Assaying 11 enzymes systems, 23 putative loci were scored for a total of 27 alleles. Nineteen loci were monomorphic and fixed for the same allele, while the remaining 4 loci, each with 2 alleles, were polymorphic across the 48 accessions. The results show significant differences in allele frequencies among the accessions, regions of origin and the adaptation zones. However, all measures of genetic variation used show that the accessions maintained much lower levels of variation than the corresponding mean values for self-pollinating crop plants, confirming previous conclusions that sorghum is depauperated in allozymic variation. The total gene diversity was 0.25, which partitioned 59% within and 41% among accessions. The latter was largely due to variation among accessions within the adaptation zones (38%), while only 3% was due to variation among accessions between the adaptation zones. Similarly, most of the total gene diversity was found within the regions of origin (80%) and within the adaptation zones (97%). Both the dendrogram constructed from NEI's unbiased genetic distance and the plot of the first two principal components distinguished three groups of regions. The level of gene flow was low among accessions, regions of origin and among accessions within adaptation zones, but high among adaptation zones. The results are discussed with emphasis on genetic resources conservation and utilization.  相似文献   

20.
In order to get an overview on the genetic relatedness of sorghum (Sorghum bicolor) landraces and cultivars grown in low-input conditions of small-scale farming systems, 46 sorghum accessions derived from Southern Africa were evaluated on the basis of amplified fragment length polymorphism (AFLPs), random amplified polymorphic DNAs (RAPDs) and simple sequence repeats (SSRs). By this approach all sorghum accessions were uniquely fingerprinted by all marker systems. Mean genetic similarity was estimated at 0.88 based on RAPDs, 0.85 using AFLPs and 0.31 based on SSRs. In addition to this, genetic distance based on SSR data was estimated at 57 according to a stepwise mutation model (Deltamu-SSR). All UPGMA-clusters showed a good fit to the similarity estimates (AFLPs: r = 0.92; RAPDs: r = 0.88; SSRs: r = 0.87; Deltamu-SSRs: r = 0.85). By UPGMA-clustering two main clusters were built on all marker systems comprising landraces on the one hand and newly developed varieties on the other hand. Further sub-groupings were not unequivocal. Genetic diversity (H, DI) was estimated on a similar level within landraces and breeding varieties. Comparing the three approaches to each other, RAPD and AFLP similarity indices were highly correlated (r = 0.81), while the Spearman's rank correlation coefficient between SSRs and AFLPs was r = 0.57 and r = 0.51 between RAPDs and SSRs. Applying a stepwise mutation model on the SSR data resulted in an intermediate correlation coefficient between Deltamu-SSRs and AFLPs (r = 0.66) and RAPDs ( r = 0.67), respectively, while SSRs and Deltamu-SSRs showed a lower correlation coefficient (r = 0.52). The highest bootstrap probabilities were found using AFLPs (56% on average) while SSR, Deltamu-SSR and RAPD-based similarity estimates had low mean bootstrap probabilities (24%, 27%, 30%, respectively). The coefficient of variation (CV) of the estimated genetic similarity decreased with an increasing number of bands and was lowest using AFLPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号